Skip to main content

Pulsatile Flow in an Elastic Tube

  • Chapter
  • First Online:
Hemo-Dynamics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Blood vessels are not rigid. Oscillatory flow in an elastic tube differs in a fundamental way from oscillatory flow in a rigid tube (Fig. 5.1). In a rigid tube, as the driving pressure increases to a peak during the systolic (rising pressure) phase of the oscillatory cycle, the flow can only move faster along the tube. In the case of an elastic tube the flow has another option, namely that of inflating the tube locally as well as moving faster along the tube, the balance between the two options being dependent on the degree of elasticity of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lighthill M. Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics, 1975.

  2. 2.

    McDonald DA. Blood Flow in Arteries. Edward Arnold, 1974.

  3. 3.

    Caro CG, Pedley TJ, Schroter RC, Seed WA. The Mechanics of the Circulation. Oxford University Press, 1978.

  4. 4.

    Milnor WR. Hemodynamics. Williams and Wilkins, 1989.

  5. 5.

    Zamir M, 2000. The Physics of Pulsatile Flow. Springer-Verlag, New York.

  6. 6.

    McLachlan NW. Bessel Functions for Engineers. Clarendon Press, 1955.

  7. 7.

    Watson GN. Theory of Bessel Functions. Cambridge University Press, 1958.

  8. 8.

    Hodis S, Zamir M, 2011. Mechanical events within the arterial wall under the forces of pulsatile flow: A review. Journal of the Mechanical Behavior of Biomedical Materials 4:1595–1602.

  9. 9.

    Sechler EE. Elasticity in Engineering. Dover Publications, 1968.

  10. 10.

    Wempner G. Mechanics of Solids With Applications to Thin Bodies. McGraw-Hill, 1973.

  11. 11.

    Shames IH, Cozzarelli FA, 1992. Elastic and Inelastic Stress Analysis. Prentice Hall, 1992.

  12. 12.

    Bradley GL, 1975. A Primer of Linear Algebra. Prentice Hall, Englewood Cliffs, New Jersey.

  13. 13.

    Noble B, Daniel JW, 1977. Applied Linear Algebra. Prentice Hall, Englewood Cliffs, New Jersey.

  14. 14.

    Lay DC, 1994. Linear Algebra and its Applications. Addison-Wesley, Reading, Massachusetts.

  15. 15.

    Noble B, Daniel JW. Applied Linear Algebra. Prentice Hall, 1977.

  16. 16.

    Lay DC, 1994. Linear Algebra and its Applications. Addison-Wesley, 1994.

  17. 17.

    Morgan GW, Kiely JP, 1954. Wave propagation in a viscous liquid contained in a flexible tube. Journal of Acoustical Society of America 26:323–328.

  18. 18.

    Womersley JR, 1955. Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: The linear approximation for long waves. Philosophical Magazine 46:199–221.

  19. 19.

    Atabek HB, Lew HS, 1966. Wave propagation through a viscous incompressible fluid contained in an initially elastic tube. Biophysical Journal 6:481–503.

  20. 20.

    Cox RH, 1969. Comparison of linearized wave propagation models for arterial blood flow analysis. Journal of Biomechanics 2:251–265.

  21. 21.

    Ling SC, Atabek HB, 1972. A nonlinear analysis of pulsatile flow in arteries. Journal of Fluid Mechanics 55:493–511.

  22. 22.

    Korteweg DJ, 1878. Über die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Rohren. Annalen der Physik und Chemie 5:525–542.

  23. 23.

    Lamb H, 1897. On the velocity of sound in a tube, as affected by the elasticity of the walls. Memoirs and Proceedings, Manchester Literary and Philosophical Society A42:1–16.

  24. 24.

    Witzig K, 1914. Über erzwungene Wellenbewegungen zäher, inkompressibler Flüssigkeiten in elastischen Rohren. Inaugural Dissertation, Universität Bern.

  25. 25.

    Lambossy P, 1950. Apercu historique et critique sur le probleme de la propagation des ondes dans un liquide compressible enferme dans un tube elastique. Helvetica Physiologica et Pharmalogica Acta 8:209–227.

  26. 26.

    Dìaz A, Galli C, Tringler M, Ramìrez A, Fischer EIC. Reference values of pulse wave velocity in healthy people from an urban and rural Argentinean population. International Journal of Hypertension, Volume 2014, Article ID 653239, 7 pages.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zamir, M. (2016). Pulsatile Flow in an Elastic Tube. In: Hemo-Dynamics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-24103-6_5

Download citation

Publish with us

Policies and ethics