Skip to main content

Just How and Where Does P-glycoprotein Bind All Those Drugs?

  • Chapter
  • First Online:
ABC Transporters - 40 Years on

Abstract

P-glycoprotein (P-gp) was one of the first discovered, and most highly investigated, multidrug efflux pumps. P-gp was discovered in drug-resistant cancer cells and its ability to mediate adenosine triphosphate (ATP)-dependent efflux of drugs can confer resistance to cancer cells. The protein contains two sites for the binding and hydrolysis of ATP to power the active transport process. Drugs are known to bind within the transmembrane domain that comprises 12 membrane spanning α-helices. Biochemical, pharmacological and biophysical investigations continue to strive towards generating a molecular mechanism for drug transport. In addition, X-ray structures are available for the mouse and Caenorhabditis elegans isoforms at resolutions of 3–4 Å. However, one of the central issues related to the transport process remains elusive. A detailed understanding of how the protein is capable of binding its astonishing variety and number of compounds, remains unsolved. The hydrophobic vacuum cleaner and drug flippase models have been generated to describe this enigmatic property and some of their proposals remain intact. The majority of data supports the presence of a large binding domain that contains individual sites for drug interaction. These interaction sites are linked by an intricate allosteric network and binding to the sites is in close communication with the ATP hydrolytic machinery. This review provides a detailed account of our current understanding of how one membrane transporter is able to bind over 300 compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck WT, Cirtain MC, Glover CJ, Felsted RL, Safa AR (1988) Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine. Biochem Biophys Res Commun 153:959–966

    Article  CAS  PubMed  Google Scholar 

  • Bruggemann EP, Germann UA, Gottesman MM, Pastan I (1989) Two different regions of P-glycoprotein [corrected] are photoaffinity-labeled by azidopine. J Biol Chem 264:15483–15488

    PubMed  Google Scholar 

  • Bruggemann EP, Currier SJ, Gottesman MM, Pastan I (1992) Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J Biol Chem 267:21020–21026

    CAS  PubMed  Google Scholar 

  • Callaghan R, Berridge G, Ferry DR, Higgins CF (1997) The functional purification of P-glycoprotein is dependent on maintenance of a lipid-protein interface. Biochim Biophys Acta 1328:109–124

    Article  CAS  PubMed  Google Scholar 

  • Chang G (2003) Structure of MsbA from Vibrio cholera: a multidrug resistance ABC transporter homolog in a closed conformation. J Mol Biol 330:419–430

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389

    Article  CAS  PubMed  Google Scholar 

  • Chiba P, Burghofer S, Richter E, Tell B, Moser A, Ecker G (1995) Synthesis, pharmacologic activity, and structure-activity relationships of a series of propafenone-related modulators of multidrug resistance. J Med Chem 38:2789–2793

    Article  CAS  PubMed  Google Scholar 

  • Crowley E, Callaghan R (2010) Multidrug efflux pumps: drug binding—gates or cavity? FEBS J 277:530–539

    Article  CAS  PubMed  Google Scholar 

  • Crowley E, O’Mara ML, Reynolds C, Tieleman DP, Storm J, Kerr ID, Callaghan R (2009) Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1. Biochemistry 48:6249–6258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley E, O’mara ML, Kerr ID, Callaghan R (2010a) Transmembrane Helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1. FEBS J 277(19):3974–3985

    Article  CAS  PubMed  Google Scholar 

  • Crowley E, O’Mara ML, Kerr ID, Callaghan R (2010b) Transmembrane helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1. FEBS J 277:3974–3985

    Article  CAS  PubMed  Google Scholar 

  • Dano K (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 323:466–483

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938

    Article  CAS  PubMed  Google Scholar 

  • Demel MA, Schwaha R, Kramer O, Ettmayer P, Haaksma EE, Ecker GF (2008) In silico prediction of substrate properties for ABC-multidrug transporters. Expert Opin Drug Metab Toxicol 4:1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Ramachandra M, Pastan I, Gottesman MM, Ambudkar SV (1997) Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proc Natl Acad Sci USA 94:10594–10599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey S, Hafkemeyer P, Pastan I, Gottesman MM (1999) A single amino acid residue contributes to distinct mechanisms of inhibition of the human multidrug transporter by stereoisomers of the dopamine receptor antagonist flupentixol. Biochemistry 38:6630–6639

    Article  CAS  PubMed  Google Scholar 

  • Ecker G, Chiba P, Hitzler M, Schmid D, Visser K, Cordes HP, Csollei J, Seydel JK, Schaper K-J (1996) Structure-activity relationship studies on benzofuran analogs of propefenone-type modulators of tumor cell multidrug resistance. J Med Chem 39:4767–4774

    Article  CAS  PubMed  Google Scholar 

  • Ecker GF, Csaszar E, Kopp S, Plagens B, Holzer W, Ernst W, Chiba P (2002) Identification of ligand-binding regions of P-glycoprotein by activated-pharmacophore photoaffinity labeling and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Mol Pharmacol 61:637–648

    Article  CAS  PubMed  Google Scholar 

  • Ferry DR, Kampf K, Goll A, Glossmann H (1985) Subunit composition of skeletal muscle transverse tubule calcium channels evaluated with the 1,4-dihydropyridine photoaffinity probe [3H]azidopine. EMBO J 4:1933–1940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry DR, Russell MA, Cullen MH (1992) P-glycoprotein possesses a 1,4-dihydropyridine selective drug acceptor site which is allosterically coupled to a vinca alkaloid selective binding site. Biochem Biophys Res Commun 188:440–445

    Article  CAS  PubMed  Google Scholar 

  • Ferry DR, Malkhandi JP, Russell MA, Kerr DJ (1995) Allosteric regulation of [3H]vinblastine binding to P-glycoprotein of MCF-7 Adr cells by dexniguldipine. Biochem Pharmacol 49:1851–1861

    Article  CAS  PubMed  Google Scholar 

  • Frillingos S, Sahin-Toth M, Wu J, Kaback HR (1998) Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 12:1281–1299

    CAS  PubMed  Google Scholar 

  • Garrigos M, Mir LM, Orlowski S (1997) Competitive and non-competitive inhibition of the multidrug-resistance-associated P-glycoprotein ATPase. Further experimental evidence for a multisite model. Eur J Biochem 244:664–673

    Article  CAS  PubMed  Google Scholar 

  • Garrigues A, Loiseau N, Delaforge M, Ferte J, Garrigos M, Andre F, Orlowski S (2002) Characterization of two pharmacophores on the multidrug transporter P-glycoprotein. Mol Pharmacol 62:1288–1298

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Moitra K, Maki N, Dey S (2006) Allosteric modulation of the human P-glycoprotein involves conformational changes mimicking catalytic transition intermediates. Arch Biochem Biophys 450:100–112

    Article  CAS  PubMed  Google Scholar 

  • Glossmann H, Ferry DR, Striessnig J, Goll A, Moosburger K (1987) Resolving the structure of the Ca2+ channel by photoaffinity labeling. TIPS 8:95–100

    CAS  Google Scholar 

  • Gottesman MM, Ambudkar SV, Xia D (2009) Structure of a multidrug transporter. Nat Biotechnol 27:546–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberger LM (1993) Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within, or immediately C-terminal to, transmembrane domains 6 and 12. J Biol Chem 268:11417–11425

    CAS  PubMed  Google Scholar 

  • Greenberger LM, Yang C-PH, Gindin E, Horwitz SB (1990) Photoaffinity probes for the a1-adrenergic receptor and the calcium channel bind to a common domain in P-glycoprotein. J Biol Chem 265:4394–4401

    CAS  PubMed  Google Scholar 

  • Gribar JJ, Ramachandra M, Hrycyna CA, Dey S, Ambudkar SV (2000) Functional characterization of glycosylation-deficient human P-glycoprotein using a vaccinia virus expression system. J Membr Biol 173:203–214

    Article  CAS  PubMed  Google Scholar 

  • Hafkemeyer P, Dey S, Ambudkar SV, Hrycyna CA, Pastan I, Gottesman MM (1998) Contribution to substrate specificity and transport of nonconserved residues in transmembrane domain 12 of human P-glycoprotein. Biochemistry 37:16400–16409

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF (1992) ABC transporters; from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926

    Article  CAS  PubMed  Google Scholar 

  • Homolya L, Hollo Z, Germann UA, Pastan I, Gottesman MM, Sarkadi B (1993) Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem 268:21493–21496

    CAS  PubMed  Google Scholar 

  • Isenberg B, Thole H, Tummler B, Demmer A (2001) Identification and localization of three photobinding sites of iodoarylazidoprazosin in hamster P-glycoprotein. Eur J Biochem 268:2629–2634

    Article  CAS  PubMed  Google Scholar 

  • Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenakin TP (1997) Pharmacologic analysis of drug-receptor interaction. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192

    Article  CAS  PubMed  Google Scholar 

  • Lankelma J, Spoelstra EC, Dekker H, Broxterman HJ (1990) Evidence for daunomycin efflux from multidrug resistant 2780AD human ovarian carcinoma cells against a concentration gradient. Bioch Biophys Acta 1055:217–222

    Article  CAS  Google Scholar 

  • Larazeno S, Birdsall NJM (1993) Estimation of competitive antagonist affinity from functional inhibition curves using the Gaddum, Schild and Cheng-Prusoff equations. Br J Pharmacol 109:1110–1119

    Article  Google Scholar 

  • Lerner-Marmarosh N, Gimi K, Urbatsch IL, Gros P, Senior AE (1999) Large scale purification of detergent-soluble P-glycoprotein from Pichia pastoris cells and characterization of nucleotide binding properties of wild-type, Walker A, and Walker B mutant proteins. J Biol Chem 274:34711–34718

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jaimes KF, Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23:34–46

    Article  PubMed  CAS  Google Scholar 

  • Ling V, Thompson LH (1974) Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol 83:103–116

    Article  CAS  PubMed  Google Scholar 

  • Ling V, Kartner N, Sudo T, Siminovitch L, Riordan JR (1983) Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat Rep 67:869–874

    CAS  PubMed  Google Scholar 

  • Litman T, Zeuthen T, Skovsgaard T, Stein WD (1997) Competitive, non-competitive and cooperative interactions between substrates of P-glycoprotein as measured by its ATPase activity. Biochim Biophys Acta 1361:169–176

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Sharom FJ (1996) Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Biochemistry 35:11865–11873

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Sharom FJ (1997) Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter. Biochemistry 36:2836–2843

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Siemiarczuk A, Sharom FJ (2000) Intrinsic fluorescence of the P-glycoprotein multidrug transporter: sensitivity of tryptophan residues to binding of drugs and nucleotides. Biochemistry 39:14927–14938

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1993) Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein. J Biol Chem 268:19965–19972

    CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1995a) Membrane topology of a cysteine-less mutant of human P-glycoprotein. J Biol Chem 270:843–848

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1995b) Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug stimulated ATPase activities. J Biol Chem 270:21449–21452

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1997) Identification of residues in the drug-binding site of human P-glycoprotein using a thiol-reactive substrate. J Biol Chem 272:31945–31948

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1999) Identification of residues in the drug-binding domain of human P-glycoprotein. Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane. J Biol Chem 274:35388–35392

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (2000) Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J Biol Chem 275:39272–39278

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (2001) Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. J Biol Chem 276:14972–14979

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (2002) Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J Biol Chem 277:44332–44338

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (2005) Do drug substrates enter the common drug-binding pocket of P-glycoprotein through “gates”? Biochem Biophys Res Commun 329:419–422

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2003a) Permanent Activation of the Human P-glycoprotein by Covalent Modification of a Residue in the Drug-binding Site. J Biol Chem 278:20449–20452

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2003b) Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. J Biol Chem 278:39706–39710

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2003c) Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding. J Biol Chem 278:13603–13606

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2006a) Transmembrane segment 1 of human P-glycoprotein contributes to the drug-binding pocket. Biochem J 396:537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2006b) Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Biochem J 399:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugo MR, Sharom FJ (2005) Interaction of LDS-751 and Rhodamine 123 with P-Glycoprotein: evidence for simultaneous binding of both drugs. Biochemistry 44:100

    Google Scholar 

  • Lugo MR, Sharom FJ (2009) Interaction of LDS-751 with the drug-binding site of P-glycoprotein: a Trp fluorescence steady-state and lifetime study. Arch Biochem Biophys 492:17–28

    Article  CAS  PubMed  Google Scholar 

  • Maki N, Dey S (2006) Biochemical and pharmacological properties of an allosteric modulator site of the human P-glycoprotein (ABCB1). Biochem Pharmacol 72:145–155

    Article  CAS  PubMed  Google Scholar 

  • Maki N, Hafkemeyer P, Dey S (2003) Allosteric modulation of human P-glycoprotein. Inhibition of transport by preventing substrate translocation and dissociation. J Biol Chem 278:18132–18139

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Berridge G, Higgins CF, Callaghan R (1997) The multi-drug resistance reversal agent SR33557 and modulation of vinca alkaloid binding to P-glycoprotein by an allosteric interaction. Br J Pharmacol 122:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R (1999) The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol 128:403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Berridge G, Higgins CF, Mistry P, Charlton P, Callaghan R (2000) Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol 58:624–632

    CAS  PubMed  Google Scholar 

  • Martin C, Higgins CF, Callaghan R (2001) The vinblastine binding site adopts high- and low-affinity conformations during a transport cycle of P-glycoprotein. Biochemistry 40:15733–15742

    Article  CAS  PubMed  Google Scholar 

  • Martinez L, Arnaud O, Henin E, Tao H, Chaptal V, Doshi R, Andrieu T, Dussurgey S, Tod M, di Pietro A, Zhang Q, Chang G, Falson P (2014) Understanding polyspecificity within the substrate-binding cavity of the human multidrug resistance P-glycoprotein. FEBS J 281:673–682

    Article  CAS  PubMed  Google Scholar 

  • Montanari F, Ecker GF (2015) Prediction of drug-ABC-transporter interaction—recent advances and future challenges. Adv Drug Deliv Rev

    Google Scholar 

  • Naito M, Yusa K, Tsuruo T (1989) Steroid hormones inhibit binding of Vinca alkaloid to multidrug resistance related P-glycoprotein. Biochem Biophys Res Commun 158:1066–1071

    Article  CAS  PubMed  Google Scholar 

  • O’Mara ML, Mark AE (2014) Structural characterization of two metastable ATP-bound states of P-glycoprotein. PLoS ONE 9:e91916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Mara ML, Tieleman DP (2007) P-glycoprotein models of the apo and ATP-bound states based on homology with Sav 1866 and MalK. FEBS Lett 581:4217–4222

    Article  PubMed  CAS  Google Scholar 

  • Orlowski S, Garrigos M (1999) Multiple recognition of various amphiphilic molecules by the multidrug resistance P-glycoprotein: molecular mechanisms and pharmacological consequences coming from functional interactions between various drugs. Anticancer Res 19:3109–3123

    CAS  PubMed  Google Scholar 

  • Pajeva IK, Wiese M (2002) Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (hypothesis). J Med Chem 45:5671–5686

    Article  CAS  PubMed  Google Scholar 

  • Pascaud C, Garrigos M, Orlowski S (1998) Multidrug resistance transporter P-glycoprotein has distinct but interacting binding sites for cytotoxic drugs and reversing agents. Biochem J 333(Pt 2):351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawagi AB, Wang J, Silverman M, Reithmeier RA, Deber CM (1994) Transmembrane aromatic amino acid distribution in P-glycoprotein. A functional role in broad substrate specificity. J Mol Biol 235:554–564

    Article  CAS  PubMed  Google Scholar 

  • Pleban K (2004) P-glycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach. Mol Pharmacol 67:365–374

    Article  PubMed  CAS  Google Scholar 

  • Qu Q, Sharom FJ (2001) FRET analysis indicates that the two ATPase active sites of the P-glycoprotein multidrug transporter are closely associated. Biochemistry 40:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Qu Q, Sharom FJ (2002) Proximity of bound Hoechst 33342 to the ATPase catalytic sites places the drug binding site of P-glycoprotein within the cytoplasmic membrane leaflet. Biochemistry 41:4744–4752

    Article  CAS  PubMed  Google Scholar 

  • Raub TJ (2005) P-glycoprotein recognition of subtrates and circumvention through rational drug design. Mol Pharm 3(1):3–25

    Google Scholar 

  • Raviv Y, Pollard HB, Bruggemann EP, Pastan I, Gottesman MM (1990) Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem 265:3975–3980

    CAS  PubMed  Google Scholar 

  • Ravna AW, Sylte I, Sager G (2007) Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5). Theor Biol Med Model 4:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riordan JR, Ling V (1985) Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther 28:51–75

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MF, Callaghan R, Ford RC, Higgins CF (1997) Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem 272:10685–10694

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MF, Velarde G, Ford RC, Martin C, Berridge G, Kerr ID, Callaghan R, Schmidlin A, Wooding C, Linton KJ, Higgins CF (2001) Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J 20:5615–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg MF, Kamis AB, Callaghan R, Higgins CF, Ford RC (2003) Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 278:8294–8299

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MF, Callaghan R, Modok S, Higgins CF, Ford RC (2004) 3-D structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J Biol Chem M410296200

    Google Scholar 

  • Rosenberg MF, Callaghan R, Modok S, Higgins CF, Ford RC (2005) Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J Biol Chem 280:2857–2862

    Article  CAS  PubMed  Google Scholar 

  • Rothnie A, Storm J, Campbell J, Linton KJ, Kerr ID, Callaghan R (2004) The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein. J Biol Chem 279:34913–34921

    Article  CAS  PubMed  Google Scholar 

  • Safa AR (1988) Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil. Proc Natl Acad Sci USA 85:7187–7191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safa AR (1999) Photoaffinity analogs for multidrug resistance-related transporters and their use in identifying chemosensitizers. Drug Resist Updat 2:371–381

    Article  CAS  PubMed  Google Scholar 

  • Safa AR (2004) Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators. Curr Med Chem Anticancer Agents 4:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safa AR, Mehta ND, Agresti M (1989) Photoaffinity labeling of P-glycoprotein in multidrug resistant cells with photoactive analogs of colchicine. Biochem Biophys Res Commun 162:1402–1408

    Article  CAS  PubMed  Google Scholar 

  • Seelig A (1998) A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 251:252–261

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AB, Ling V (1995) Reconstitution of drug transport by purified P-glycoprotein. J Biol Chem 270:16167–16175

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AB, Ling V (1997a) Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol 53:587–596

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AB, Ling V (1997b) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250:130–137

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AB, Ling V (1998) Transport of LDS-751 from the cytoplasmic leaflet of the plasma membrane by the rhodamine-123-selective site of P-glycoprotein. Eur J Biochem 254:181–188

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AB, Fox K, Lam P, Ling V (1999) Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur J Biochem 259:841–850

    Article  CAS  PubMed  Google Scholar 

  • Sharom FJ (1997) The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 160:161–175

    Article  CAS  PubMed  Google Scholar 

  • Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonveaux N, Shapiro AB, Goormaghtigh E, Ling V, Ruysschaert JM (1996) Secondary and tertiary structure changes of reconstituted P-glycoprotein. A Fourier transform attenuated total reflection infrared spectroscopy analysis. J Biol Chem 271:24617–24624

    Article  CAS  PubMed  Google Scholar 

  • Sonveaux N, Vigano C, Shapiro AB, Ling V, Ruysschaert JM (1999) Ligand-mediated tertiary structure changes of reconstituted P-glycoprotein. A tryptophan fluorescence quenching analysis. J Biol Chem 274:17649–17654

    Article  CAS  PubMed  Google Scholar 

  • Spoelstra EC, Westerhoff HV, Pinedo HM, Dekker H, Lankelma J (1994) The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competitive substrate. Eur J Biochem 221:363–373

    Article  CAS  PubMed  Google Scholar 

  • Storm J, O’Mara ML, Crowley EH, Peall J, Tieleman DP, Kerr ID, Callaghan R (2007) Residue G346 in transmembrane segment six is involved in inter-domain communication in P-glycoprotein. Biochemistry 46:9899–9910

    Article  CAS  PubMed  Google Scholar 

  • Storm J, Modok S, O’Mara ML, Tieleman DP, Kerr ID, Callaghan R (2008) Cytosolic region of TM6 in P-glycoprotein: topographical analysis and functional perturbation by site directed labeling. Biochemistry 47:3615–3624

    Article  CAS  PubMed  Google Scholar 

  • Stouch TR, Gudmundsson O (2002) Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev 54:315–328

    Article  CAS  PubMed  Google Scholar 

  • Subramanian N, Condic-jurkic K, Mark AE, O’mara ML (2015) Identification of possible binding sites for Morphine and Nicardipine on the multidrug transporter P-glycoprotein using umbrella sampling techniques. J Chem Inf Model

    Google Scholar 

  • Taylor JC, Ferry DR, Higgins CF, Callaghan R (1999) The equilibrium and kinetic drug binding properties of the mouse P-gp1a and P-gp1b P-glycoproteins are similar. Br J Cancer 81:783–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AM, Storm J, Soceneantu L, Linton KJ, Gabriel M, Martin C, Woodhouse J, Blott E, Higgins CF, Callaghan R (2001) Detailed characterization of cysteine-less P-glycoprotein reveals subtle pharmacological differences in function from wild-type protein. Br J Pharmacol 134:1609–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R (1992) Human P-glycoprotein transports cortisol, aldosterone and dexamethasone but not progesterone. J Biol Chem 267:24248–24252

    CAS  PubMed  Google Scholar 

  • Ueda K, Taguchi Y, Morishima M (1997) How does P-glycoprotein recognize its substrates? Semin Cancer Biol 8:151–159

    Article  CAS  PubMed  Google Scholar 

  • van Wonderen JH, McMahon RM, O’Mara ML, McDevitt CA, Thomson AJ, Kerr ID, Macmillan F, Callaghan R (2014) The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis. FEBS J 281:2190–2201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandevuer S, van Bambeke F, Tulkens PM, Prevost M (2006) Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Proteins 63:466–478

    Article  CAS  PubMed  Google Scholar 

  • Ward AB, Szewczyk P, Grimard V, Lee CW, Martinez L, Doshi R, Caya A, Villaluz M, Pardon E, Cregger C, Swartz DJ, Falson PG, Urbatsch IL, Govaerts C, Steyaert J, Chang G (2013) Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proc Natl Acad Sci USA 110:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Bounaud PY, Kuduk SD, Yang CP, Ojima I, Horwitz SB, Orr GA (1998) Identification of the domains of photoincorporation of the 3′- and 7-benzophenone analogues of taxol in the carboxyl-terminal half of murine mdr1b P-glycoprotein. Biochemistry 37:11272–11279

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Collins KI, Greenberger LM (1995) Functional evidence that transmembrane 12 and the loop between transmembrane 11 and 12 form part of the drug-binding domain in P-glycoprotein encoded by MDR1. J Biol Chem 270:5441–5448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from Worldwide Cancer Research (#12-0008) and the Wellcome Trust (#WT094392MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Callaghan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mittra, R., Coyle, E.M., Callaghan, R. (2016). Just How and Where Does P-glycoprotein Bind All Those Drugs?. In: George, A. (eds) ABC Transporters - 40 Years on. Springer, Cham. https://doi.org/10.1007/978-3-319-23476-2_8

Download citation

Publish with us

Policies and ethics