Skip to main content

Design of Silicon Based Integrated Optical Devices Using the Finite Element Method

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2014 (ECMI 2014)

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Included in the following conference series:

Abstract

Among the components needed in photonic integrated circuits, dielectric waveguides and small footprint ring resonators play a key role for many applications and require sophisticated electromagnetic analysis and design. In this work, we present an accurate vectorial mode solver based on the finite element method. Considering a general nonreciprocal permittivity tensor, the proposed method allows us to investigate important cases of practical interest. To compute the electromagnetic modes, the Rayleigh-Ritz functional is derived for the non-self adjoint case, it is discretized using the node elements and the penalty function is added to remove the spurious solutions. Although the use of the penalty function is well known for the waveguide problem, it has been introduced for the first time (to the best of our knowledge) in the ring resonator modal analysis. The resulting quadratic eigenvalue problem is linearized and solved in terms of the propagation constant for a given frequency (i.e., γ-formulation). Unlike the earlier developed mode solvers, our approach allows us to precisely compute both forward and backward propagating modes in the nonreciprocal case. Moreover, it avoids time-consuming iterations and preserves matrix sparsity, ensuring high accuracy and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berini, P., Wu, K.: Modeling lossy anisotropic dielectric waveguides with the method of lines. IEEE Trans. Microwave Theory Tech. 44(5), 749–759 (1996)

    Article  Google Scholar 

  2. Chew, W.: Waves and Fields in Inhomogeneous Media. Wiley-IEEE Press, New York (1999)

    Book  Google Scholar 

  3. Fallahkhair, A.B., Li, K.S., Murphy, T.E.: Vector finite difference modesolver for anisotropic dielectric waveguides. IEEE/OSA J. Lightwave Technol. 26(11), 1423–1431 (2008)

    Article  Google Scholar 

  4. Gabriel, G.J., Brodwin, M.E.: The solution of guided waves in inhomogeneous anisotropic media by perturbation and variational methods. IEEE Trans. Microwave Theory Tech. 13(3), 364–370 (1965)

    Article  Google Scholar 

  5. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  6. Jin, J.: The Finite Element Method in Electro-Magnetics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  7. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  8. Kakihara, K., Kono, N., Saitoh, K., Koshiba, M.: Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends. Opt. Express 14(23), 11128–11141 (2006)

    Article  Google Scholar 

  9. Kim, S., Gopinath, A.: Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends. IEEE/OSA J. Lightwave Technol. 14(9), 2085–2092 (2006)

    Google Scholar 

  10. Konrad, A.: High-order triangular finite elements for electromagnetic waves in anisotropic media. IEEE Trans. Microwave Theory Tech. 25(5), 353–360 (1977)

    Article  Google Scholar 

  11. Landau, L.D., Lifshits, E.M.: Electrodynamics of Continuous Media. A Course of Theoretical Physics, vol. 8. Pergamon, New York (1960)

    Google Scholar 

  12. Lu, Y., Fernandez, F.A.: An efficient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides. IEEE Trans. Microwave Theory Tech. 41(6), 1215–1223 (1993)

    Article  Google Scholar 

  13. Mur, G.: Edge elements, their advantages and their disadvantages. IEEE Trans. Magn. 30(5), 3552–3557 (1994)

    Article  Google Scholar 

  14. Photon Design: Integrated optics software FIMMWAVE 4.1. http://www.photond.com/

  15. Pintus, P.: Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides. Opt. Express 22(13), 15737–15756 (2014)

    Article  Google Scholar 

  16. Pintus, P., Tien, M.C., Bowers, J.E.: Design of magneto-optical ring isolator on SOI based on the finite element method. IEEE Photon. Technol. Lett. 23(22), 1670–1672 (2011)

    Article  Google Scholar 

  17. Prkna, L., Hubálek, M., Ctyroký, J.: Field modeling of circular microresonators by film mode matching. IEEE J. Sel. Top. Quantum Electron. 11(1), 217–223 (2005)

    Article  Google Scholar 

  18. Rahman, B.M.A., Davies, J.B.: Penalty function improvement of waveguides solution by finite elements. IEEE Trans. Microwave Theory Tech. 32(8), 922–928 (1984)

    Article  Google Scholar 

  19. Selleri, S., Zoboli, M.: Performance comparison of finite-element approaches for electromagnetic waveguides. J. Opt. Soc. Am. A 14(7), 1460–1466 (1997)

    Article  MathSciNet  Google Scholar 

  20. Sher, S.M., Pintus, P., Di Pasquale, F., Bianconi, M., Montanari, G.B., De Nicola, P., Sugliani, S., Prati, G.: Design of 980nm-pumped waveguide laser for continuous wave operation in ion implanted Er: LiNbO 3. IEEE J. Quantum Electron. 47(4), 526–533 (2011)

    Article  Google Scholar 

  21. Sudbø, A.S.: Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides. Pure Appl. Opt. 2(3), 211–233 (1993)

    Article  Google Scholar 

  22. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ye, W.N., Xu, D.X., Janz, S., Cheben, P., Picard, M.J., Lamontagne, B., Tarr, N.G.: Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides. IEEE/OSA J. Lightwave Technol. 23(3), 1308–1318 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by a PhD scholarship from the Scuola Sant’Anna, by the Tuscany Region through the project ARNO-T3 PAR FAS 2007–2013 and by the European Commission grant IRIS, project no. 619194 FP7-ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pintus .

Editor information

Editors and Affiliations

Appendix

Appendix

To compute the matrices in Eq. (12) let us define the following matrices

$$\displaystyle\begin{array}{rcl} R_{ij} =\iint _{S}\phi _{i}\phi _{j}\,dxdy,\quad P_{ij}& =& \iint _{S}\phi _{i}\phi _{j}\,x^{2}dxdy,\quad J_{ ij} =\iint _{S}\phi _{i} \frac{\partial \phi _{j}} {\partial y}\,dxdy, \\ N_{ij} =\iint _{S}\phi _{i} \frac{\partial \phi _{j}} {\partial x}\,dxdy,\quad D_{ij}& =& \iint _{S} \frac{\partial \phi _{i}} {\partial y} \frac{\partial \phi _{j}} {\partial y}\,dxdy,\quad E_{ij} =\iint _{S} \frac{\partial \phi _{i}} {\partial x} \frac{\partial \phi _{j}} {\partial x}\,dxdy, \\ Z_{ij}& =& \iint _{S} \frac{\partial \phi _{i}} {\partial y} \frac{\partial \phi _{j}} {\partial x}\,dxdy, {}\end{array}$$
(13)

where R, P, D and E are symmetric. If \(\mathbf{p} =\boldsymbol{\varepsilon }_{ r}^{-1}\), M, L, C and K for the waveguide problem are

$$\displaystyle\begin{array}{rcl} M& =& \left (\begin{array}{*{10}c} -p_{yy}R& p_{yx}R & 0 \\ p_{xy}R &-p_{xx}R& 0 \\ 0 & 0 &\alpha _{p}R \end{array} \right ),\qquad L = \left (\begin{array}{*{10}c} R& 0 & 0\\ 0 &R & 0 \\ 0 & 0 &-R \end{array} \right ), \\ C& =& \left (\begin{array}{*{10}c} p_{zy}J^{t} - p_{yz}J & p_{yz}N - p_{zx}J^{t} &p_{yx}J - p_{yy}N -\alpha _{p}N^{t} \\ p_{xz}J - p_{zy}N^{t} & p_{zx}N^{t} - p_{xz}N & p_{xy}N - p_{xx}J -\alpha _{p}J^{t} \\ p_{xy}J^{t} - p_{yy}N^{t} -\alpha _{p}N &p_{yx}N^{t} - p_{xx}J^{t} -\alpha _{p}J & 0 \end{array} \right ), \\ K& =& \left (\begin{array}{*{10}c} p_{zz}D +\alpha _{p}E &-p_{zz}Z +\alpha _{p}Z^{t}& p_{zy}Z - p_{zx}D \\ -p_{zz}Z^{t} +\alpha _{p}Z & p_{zz}E +\alpha _{p}D & p_{zx}Z^{t} - p_{zy}E \\ p_{xz}D - p_{yz}Z^{t}& p_{yz}E - p_{xz}Z &p_{xy}Z + p_{yx}Z^{t} - p_{xx}D - p_{yy}E \end{array} \right ). {}\end{array}$$
(14)

Note that the matrices for the ring resonator are defined as in Eq. (13) where xr and yz. To compact the notation, we also defined the matrices

$$\displaystyle\begin{array}{rcl} S& =& \tfrac{3} {2}R + N,\qquad T = \tfrac{1} {2}R + N,\qquad X = \tfrac{3} {2}J^{t} + Z,\qquad Y = \tfrac{1} {2}J^{t} + Z, \\ U& =& \tfrac{9} {4}R + \tfrac{3} {2}\left (N + N^{t}\right ) + E,\qquad V = \frac{3} {4}R + \tfrac{3} {2}N + \tfrac{1} {2}N^{t} + E, \\ W& =& \tfrac{1} {4}R + \tfrac{1} {2}N + \tfrac{1} {2}N^{t} + E. {}\end{array}$$
(15)

Therefore, M, L, C and K for the ring resonator are

$$\displaystyle\begin{array}{rcl} M& =& \left (\begin{array}{*{10}c} -p_{zz}R& 0 & p_{rz}R \\ 0 &\alpha _{p}R& 0 \\ p_{zr}R & 0 &-p_{rr}R \end{array} \right ),\qquad L = \left (\begin{array}{*{10}c} P & 0 & 0\\ 0 &-P & 0 \\ 0 & 0 &P \end{array} \right ), \\ C& =& \left (\begin{array}{ccc} p_{\theta z}J^{t} - p_{z\theta }J &p_{zr}J - p_{zz}S -\alpha _{p}S^{t}& p_{z\theta }T - p_{\theta r}J^{t} \\ p_{rz}J^{t} - p_{zz}S^{t} -\alpha _{p}S & 0 &p_{zr}S^{t} -\alpha _{p}J - p_{rr}J^{t} \\ - p_{\theta z}T^{t} + p_{r\theta }J^{t} & p_{rz}S -\alpha _{p}J^{t} - p_{rr}J & p_{\theta r}T^{t} -\alpha _{p}T \end{array} \right ), \\ K& =& \left (\begin{array}{ccc} p_{\theta \theta }D +\alpha _{p}U & - p_{\theta r}D + p_{\theta z}X & \alpha _{p}X^{t} - p_{\theta \theta }Y \\ p_{r\theta }D - p_{z\theta }X^{t}&p_{rz}X + p_{zr}X^{t} - p_{rr}D - p_{zz}U &p_{z\theta }V - p_{r\theta }Y \\ \alpha _{p}X - p_{\theta \theta }Y ^{t} & - p_{\theta z}V ^{t} + p_{\theta r}Y ^{t} & p_{\theta \theta }W +\alpha _{p}D \end{array} \right ). {}\end{array}$$
(16)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Pintus, P. (2016). Design of Silicon Based Integrated Optical Devices Using the Finite Element Method. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_158

Download citation

Publish with us

Policies and ethics