Skip to main content

Configurable CRC Error Detection Model for Performance Analysis of Polynomial: Case Study for the 32-Bits Ethernet Protocol

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2015, NEW2AN 2015)

Abstract

Almost every form of digital information exchange can introduce communication errors. In order to overcome the inherent inaccuracy of information transmission, a few methods for error detection and correction have been developed. Cyclic Redundancy check Codes (CRCs) are used in embedded networks for effective error detection. Paper discusses the development of the simulation model for the configurable CRC-polynomials performance analysis over Binary Symmetric Channels (BSCs). This paper presents a novel model which can be used to investigate several classes of CRC polynomials codes with ‘n’ parity bits varying from ‘1’ to ‘64’. It also discuss the hardware implementation on Altera’s FPGA Stratix II GX device ‘EP2SGX90FF1508C3’ for CRC-32 ‘IEEE-802’ and suggest the indirect methodology of CRC-performance using Packet Error Rate (PER) parameter using Altera TSE MegaCore function that supports 10/100/1000 Mbps Ethernet over 1000Base-LX physical media. It is proposed to search good CRC codes of 32, 40 and 64 bit and studying performance for maximum payload over Ethernet protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, M.J.S.: Application-Specific Integrated Circuits. Addison-Wesley Longman (January 1998)

    Google Scholar 

  2. Tanenbaum, A.S.: Computer Networks, 2nd edn. Prentice Hall (1988)

    Google Scholar 

  3. Koopman, P.: 32-Bit cyclic redundancy codes for internet applications. In: The International Conference on Dependable Systems and Networks (DSN) (2002)

    Google Scholar 

  4. Koopman, P., Chakravarty, T.: Cyclic Redundancy Code (CRC) polynomial selection for embedded networks. In: The International Conference on Dependable Systems and Networks, DSN 2004 (2004)

    Google Scholar 

  5. Baicheva, T., Dodunekov, S., Kazokov, P.: Undetected error probability performance of cyclic redundancy-check codes of 16-bit reducndancy. IEEE Proc. Comms. 147(5) (2000) 253–256

    Google Scholar 

  6. Castagnoli, G., Brauer, S., Herrmann, M.: Optimization of cyclic redundancy-check codes with 24 and 32 parity bits. IEEE Transactions on Communications 41(6), 883–892 (1993)

    Article  MATH  Google Scholar 

  7. Baicheva, T., Dodunekov, S., Kazakov, P.: Undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy. IEE Proc. Commun. 147(5) (2000)

    Google Scholar 

  8. Baicheva, T.S.: Determination of the Best CRC Codes with up to 10-Bit Redundancy. IEEE Transactions on Communications 56(8), 1214–1220 (2008)

    Article  Google Scholar 

  9. Koopman, P.: 32-bit cyclic redundancy codes for internet applications. In: Intl. Conf. Dependable Systems and Networks (DSN), pp. 459–468 (2002)

    Google Scholar 

  10. Prévost, R., et al.: Cyclic redundancy check-based detection algorithms for automatic identification system signals received by satellite. Int. J. Satell. Commun. Network 31, 157–176 (2013)

    Article  Google Scholar 

  11. Beygi, L., et al.: Rate-Adaptive Coded Modulation for Fiber-Optic Communications. Journal of Lightwave Technology 32, 2 (2014)

    Article  Google Scholar 

  12. Peterson72, Peterson, W., Weldon, E.: Error-Correcting Codes, 2nd edn. MIT Press (1972)

    Google Scholar 

  13. Ulf Nordqvist, Thesis:Protocol Processing in Network Terminals, Department of Electrical Engineering, Linkopings Universitet, SE-581 83 Linkoping, Sweden (2004)

    Google Scholar 

  14. Lu, W., Wong, S.: A Fast CRC Update Implementation, Computer Engineering Laboratory, Electrical Engineering Department. Delft University of Technology, Delft, Netherlands

    Google Scholar 

  15. Gad, V.R., Gad, R.S., Naik, G.M.: Gigabit Ethernet Implementation of CRC-32 in noisy channels. International Journal of VLSI Design, Serial Publications 1, 22–32 (2011)

    Google Scholar 

  16. Nordqvist, U., Henriksson, T., Liu, D.: CRC generation for protocol processing. In: Norchip Turku, Finland, pp. 288–293(2000)

    Google Scholar 

  17. Shieh, M.-D., Sheu, M.-H., Chen, C.-H., Lo, H.-F.: A Systematic Approach for Parallel CRC Computations. Journal of Information Science And Engineering 17, 445–461 (2001)

    Google Scholar 

  18. Campobello, G., Patane, G., Russo, M.: Parallel CRC Realization. IEEE Transactions on Computers 52, 10 (2003)

    Article  Google Scholar 

  19. The iSCSI CRC32C Digest and the Simultaneous Multiply and Divide Algorithm Luben Tuikovplentec Ltd. Richmond Hill, Ontario, Canada Vicente Cavannay Agilent Technologies Roseville, California, USA (January 30, 2002)

    Google Scholar 

  20. Kounavis, M.E., Berry, F.L.: Novel Table Lookup-Based Algorithms for High-Performance CRC Generation. IEEE Transactions on Computers 57(11), 1550–1560 (2008)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, G.D.: Fast CRCs. IEEE Transactions on Computers 58(10), 1321–1331 (2009)

    Article  Google Scholar 

  22. Ulf Nordqvist, Thesis: Protocol Processing in Network Terminals by, Department of Electrical Engineering, Linkopings universitet, SE-581 83 Linkoping, Sweden (2004)

    Google Scholar 

  23. Campobello, G., Patane, G., Russo, M.: Parallel CRC Realization. IEEE Transactions on Computers 52(10) (2003)

    Google Scholar 

  24. Albertango, G., Sisto, R.: Parallel CRC Generation. IEEE Micro 10(5), 63–71 (1990)

    Article  Google Scholar 

  25. Shieh, M.-D., Sheu, M.-H., Chen, C.-H., Lo, H.-F.: A Systematic Approach for Parallel CRC Computations. Journal of Information Science And Engineering 17, 445–461 (2001)

    Google Scholar 

  26. Pei, T.-B., Zukowski, C.: High-speed parallel CRC circuits in VLSI. IEEE Transactions on Communications 40, 653–657 (1992)

    Article  MATH  Google Scholar 

  27. Ji, H.M., Killian, E.: Fast parallel CRC algorithm and implementation on a configurable processor. In: IEEE International Conference on Communications, ICC 2002, vol. 3, pp. 1813–1817 (2002)

    Google Scholar 

  28. Grymel, M., Furber, S.B.: A Novel Programmable Parallel CRC Circuit. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(10), 1898–1902 (2011)

    Article  Google Scholar 

  29. Toal, C., McLaughlin, K., Sezer, S., Yang, X.: Design and Implementation of a Field Programmable CRC Circuit Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17(8), 1142–1147 (2009)

    Article  Google Scholar 

  30. Gad, V.R., Gad, R.S., Naik, G.M.: Implementation of Gigabit Ethernet Standard Using FPGA. International Journal of Mobile Network Communications & Telematics (IJMNCT) 2(4) (2012)

    Google Scholar 

  31. Jung-Fu, C., Koorapaty, H.: Error Detection Reliability of LTE CRC Coding, Ericsson Research, RTP, NC, USA

    Google Scholar 

  32. McDaniel, B.: An algorithm for error correcting cyclic redundance checks. C/C++ Users Journal (2003)

    Google Scholar 

  33. Shi-Yi, C., Yu-Bai, L.: Error correcting cyclic redundancy checks based on confidence declaration. Proc. ITS Telecommunications 6, 511–514 (2006)

    Google Scholar 

  34. Zhang, Y., Yuan, Q.: A multiple bits error correction method based on cyclic redundancy check codes. ICSP Signal Processing 9, 1808–1810 (2008)

    Google Scholar 

  35. Wang, R., Zhao, W., Giannakis, G.B.: CRC-assisted error correction in a convolutionally coded system. IEEE Trans. Comm. 56(11), 1807–1815 (2008)

    Article  Google Scholar 

  36. Prévost, R., Coulon, M., Bonacci, D., LeMaitre, J., Jean-Pierre, M., Jean-Yves, T.: Cyclic redundancy check-based detection algorithms for automatic identification system signals received by satellite. International Journal of Satellite Communications and Networking 31,157–176 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra S. Gad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gad, V.R., Gad, R.S., Naik, G.M. (2015). Configurable CRC Error Detection Model for Performance Analysis of Polynomial: Case Study for the 32-Bits Ethernet Protocol. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2015 2015. Lecture Notes in Computer Science(), vol 9247. Springer, Cham. https://doi.org/10.1007/978-3-319-23126-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23126-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23125-9

  • Online ISBN: 978-3-319-23126-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics