Skip to main content

Energy Efficient Compression of Shock Data Using Compressed Sensing

  • Conference paper
  • First Online:
Intelligent Systems Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 384))

Abstract

This work analyses the potential of compressed sensing (CS) for compressing shock data signals of space launch vehicles. Multiple shock data signals were compressed using compressed sensing by exploiting the sparsity of the shock data signals in the time domain. Since shock data signals are sparse in wavelet domain also, thresholding based DWT compression was performed to compare the performance of compressed sensing. Three performance metrics, viz. Peak Root mean-square Difference (PRD), Compression Ratio (CR) and execution time were used. It is also evaluated how compression of the shock data reflects in the Shock Response Spectrum (SRS). The results clearly show that CS surpasses the DWT based compression in terms of execution time for a given CR but has slightly inferior results in terms of PRD for higher values of CR. With lower computation power requirements and dimensionality reduction, CS becomes an ideal choice for compressing shock data signals in a mobile signal processing system with constraints on processing power and for transmission over a power-hungry wireless network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vesset, D., Woo, B., Morris, H.D., Villars, R.L., Little, G., Bozman, J.S., Borovick, L., Olofson, C.W., Feldman, S., Conway, S., Eastwood, M., Yezhkova, N.: World wide big data technology and services 2012–2015 forecast. Market analysis, International Data Corporation (IDC) (2012)

    Google Scholar 

  2. Gens, F.: IDC predictions 2012: Competing for 2020. Report, International Data Corporation (IDC) (2011)

    Google Scholar 

  3. Cousins, K.: Transform your data center with cloud lifecycle managementibm cloud & smarter infrastructure product management. Presentation, IBM Cloud & Smarter Infrastructure Product Management (2013)

    Google Scholar 

  4. Dudley, H.: Remaking speech. The Journal of the Acoustical Society of America 11, 169–177 (1939)

    Article  Google Scholar 

  5. Lynch, T.: Data compression with error-control coding for space telemetry. NASA technical report, National Aeronautics and Space Administration (1967)

    Google Scholar 

  6. Walter, P.L.: Selecting accelerometers for and assessing data from mechanical shock measurements. PCB Electronics Technical Note (2008)

    Google Scholar 

  7. Irvine, T.: An introduction to the vibration response spectrum (2012). www.vibrationdata.com

  8. De-Rong, C., Xiang-Bin, L.: Airborne shock response spectra analyzer based on FPGA. In: 20th International Congress on Instrumentation in Aerospace Simulation Facilities, ICIASF 2003, pp. 224–227 (2003)

    Google Scholar 

  9. Honeywell: Solid-state flight data recorder 1x, 2x, 4x models. Product description, HoneyWell (2011)

    Google Scholar 

  10. Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes. IEEE Transactions on Biomedical Engineering 58, 2456–2466 (2011)

    Article  Google Scholar 

  11. Kelly, R., Richman, G., Shock, Center, V.I.: Principles and techniques of shock data analysis. Number v. 5 in Shock and vibration monograph series. Shock and Vibration Information Center, U.S. Dept. of Defense (1971)

    Google Scholar 

  12. Martin, J.N., Sinclair, A.J., Foster, W.A.: On the shock-response-spectrum recursive algorithm of kelly and richman. Shock and Vibration 19, 19–24 (2012)

    Article  Google Scholar 

  13. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Processing Magazine 24, 118–121 (2007)

    Article  Google Scholar 

  14. Cevher, V., Indyk, P., Carin, L., Baraniuk, R.G.: A tutorial on sparse signal acquisition and recovery with graphical models (2010)

    Google Scholar 

  15. Cyklucifer, nderung, L., Sonntag: Sparsity (2011)

    Google Scholar 

  16. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rudelson, M., Vershynin, R.: On sparse reconstruction from fourier and gaussian measurements 61, 1025–1045 (2008)

    Google Scholar 

  18. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  19. Van Den Berg, E., Friedlander, M.P.: Probing the pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing 31, 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Candes, E., Romberg, J.: l1-magic: Recovery of sparse signals via convex programming, vol. 4 (2005). www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

  21. Benzid, R., Marir, F., Boussaad, A., Benyoucef, M., Arar, D.: Fixed percentage of wavelet coefficients to be zeroed for ecg compression. Electronics Letters 39, 830–831 (2003)

    Article  Google Scholar 

  22. Blanco-Velasco, M., Cruz-Roldán, F., Godino-Llorente, J.I., Blanco-Velasco, J., Armiens-Aparicio, C., López-Ferreras, F.: On the use of PRD and CR parameters for ECG compression. Medical Engineering & Physics 27, 798–802 (2003)

    Article  Google Scholar 

  23. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007)

    Article  Google Scholar 

  24. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40–44. IEEE (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrin Thomas Panachakel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Panachakel, J.T., Finitha, K. (2016). Energy Efficient Compression of Shock Data Using Compressed Sensing. In: Berretti, S., Thampi, S., Srivastava, P. (eds) Intelligent Systems Technologies and Applications. Advances in Intelligent Systems and Computing, vol 384. Springer, Cham. https://doi.org/10.1007/978-3-319-23036-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23036-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23035-1

  • Online ISBN: 978-3-319-23036-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics