Skip to main content

Viral Entry

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 391))

Abstract

Epstein-Barr virus primarily, though not exclusively, infects B cells and epithelial cells. Many of the virus and cell proteins that are involved in entry into these two cell types in vitro have been identified, and their roles in attachment and fusion are being explored. This chapter discusses what is known about entry at the cellular level in vitro and describes what little is known about the process in vivo. It highlights some of the questions that still need to be addressed and considers some models that need further testing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

EBV:

Epstein-Barr virus

NK:

Natural killer

CR2:

Complement receptor type 2

CR1:

Complement receptor type 1

SCR:

Short consensus repeat

CTLD:

C-type lectin domain

References

  • Allday MJ, Crawford DH (1988) Role of epithelium in EBV persistence and pathogenesis of B cell tumours. Lancet 1:855–856

    Article  CAS  PubMed  Google Scholar 

  • Atanasiu D, Whitbeck JC, Cairns TM, Reilly B, Cohen GH, Eisenberg RJ (2007) Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci USA 104:18718–18723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avitabile E, Forghieri C, Campadelli-Fiume G (2007) Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J Virol 81:11532–11537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Backovic M, Jardetzky TS (2009) Class III viral membrane fusion proteins. Curr Opin Struct Biol 19:189–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Backovic M, Jardetzky TS, Longnecker R (2007a) Hydrophobic residues that form putative fusion loops of Epstein-Barr virus glycoprotein B are critical for fusion activity. J Virol 81:9596–9600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Backovic M, Leser GP, Lamb RA, Longnecker R, Jardetzky TS (2007b) Characterization of EBV gB indicates properties of both class I and class II fusion proteins. Virology 368:102–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Backovic M, Longnecker R, Jardetzky TS (2009) Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc Natl Acad Sci USA 106:2880–2885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beisel C, Tanner J, Matsuo T, Thorley-Lawson D, Kezdy F, Kieff E (1985) Two major outer envelope glycoproteins of Epstein-Barr virus are encoded by the same gene. J Virol 54:665–674

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borza C, Hutt-Fletcher LM (1998) Epstein-Barr virus recombinant lacking expression of glycoprotein gp150 infects B cells normally but is enhanced for infection of the epithelial line SVKCR2. J Virol 72:7577–7582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borza CM, Hutt-Fletcher LM (2002) Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nature Med 8:594–599

    Article  CAS  PubMed  Google Scholar 

  • Borza CM, Morgan AJ, Turk SM, Hutt-Fletcher LM (2004) Use of gHgL for attachment of Epstein-Barr virus to epithelial cells compromises infection. J Virol 78:5007–5014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cairns TM, Whitbeck JC, Lou H, Heldwein EE, Chowdary TK, Eisenberg RJ, Cohen GH (2011) Capturing the herpes simplex core fusion complex (gB-gH/gL) in an acidic environment. J Virol 85:6175–6184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Rowe CL, Jardetzky TS, Longnecker R (2012) The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio. doi:10.1128/mBio.00290-11

  • Chen J, Jardetzky TS, Longnecker R (2013) The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion. J Virol 87:3620–3627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chesnokova LS, Hutt-Fletcher LM (2011) Fusion of EBV with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8 and integrin binding triggers a conformational change in gHgL. J Virol 85:13214–13223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chesnokova LS, Nishimura S, Hutt-Fletcher L (2009) Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral proteins gHgL to integrins αvβ6 or αvβ8. Proc Natl Acad Sci USA 106:20464–20469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chesnokova LS, Ahuja MK, Hutt-Fletcher LM (2014) Epstein-Barr virus glycoproteins gB and gHgL can mediate fusion and entry in trans; heat can act as a partial surrogate for gHgL and trigger a conformational change. J Virol 88 (in press)

    Google Scholar 

  • D’Addario M, Libermann TA, Xu J, Ahmad A, Menezes J (2001) Epstein-Barr virus and its glycoprotein-350 upregulate IL-6 in human B cells via CD21, involving activation of NF-κB and different signaling pathways. J Mol Biol 308:501–514

    Article  PubMed  Google Scholar 

  • Fearon DT, Carter RH (1995) The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Ann Rev Immunol 13:127–149

    Article  CAS  Google Scholar 

  • Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d complement CR2. Proc Natl Acad Sci USA 81:4510–4516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fingeroth JD, Diamond ME, Sage DR, Hayman J, Yates JL (1999) CD-21 dependent infection of an epithelial cell line, 293, by Epstein-Barr virus. J Virol 73:2115–2125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gan Y, Chodosh J, Morgan A, Sixbey JW (1997) Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-Barr virus. J Virol 71:519–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gill MB, Roecklein-Canfield J, Sage DR, Zambela-Soediono M, Longtine N, Uknis M, Fingeroth JD (2004) EBV attachment stimulates FHOS/FHOD1 redistribution and co-aggregation with CD21:formin interactions with the cytoplasmic domain of human CD21. J Cell Sci 117:2709–2720

    Article  CAS  PubMed  Google Scholar 

  • Gill MB, Edgar R, May JS, Stevenson PG (2008) A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread. PLoS ONE 3:e1808

    Article  PubMed Central  PubMed  Google Scholar 

  • Gore M, Hutt-Fletcher L (2008) The BDLF2 protein of Epstein-Barr virus is a type II glycosylated envelope protein whose processing is dependent on coexpression with the BMRF2 protein. Virology 383:162–167

    Article  PubMed Central  PubMed  Google Scholar 

  • Haan KM, Kwok WW, Longnecker R, Speck P (2000) Epstein-Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J Virol 74:2451–2454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA (2009) The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog 7:e10000496

    Google Scholar 

  • Haque T, Crawford DH (1997) PCR amplification is more sensitive than tissue culture methods for Epstein-Barr virus detection in clinical material. J Gen Virol 78:3357–3360

    Article  CAS  PubMed  Google Scholar 

  • Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–220

    Article  CAS  PubMed  Google Scholar 

  • Hutt-Fletcher LM (2007) Epstein-Barr virus entry. J Virol 81:7825–7832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hutt-Fletcher LM, Chesnokova LS (2010) Integrins as triggers of Epstein-Barr virus fusion and epithelial cell infection. Virulence 1:395–398

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang R, Scott RS, Hutt-Fletcher LM (2006) Epstein-Barr virus shed in saliva is high in B cell tropic gp42. J Virol 80:7281–7283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang R, Gu X, Nathan C, Hutt-Fletcher L (2008) Laser-capture microdissection of oropharyngeal epithelium indicates restriction of Epstein-Barr virus receptor/CD21 mRNA to tonsil epithelial cells. J Oral Path Med 37:626–633

    Article  CAS  Google Scholar 

  • Jiang R, Gu X, Moore-Medlin TN, Nathan C-A, Hutt-Fletcher LM (2012) Oral dysplasia and squamous cell carcinoma: correlation between increased expression of CD21, Epstein-Barr virus and CK19. Oral Oncol 48:836–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirschner AN, Lowrey AS, Longnecker R, Jardetzky TS (2007) Binding site interactions between Epstein-Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B-cell membrane fusion. J Virol 81:9216–9229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirschner AN, Sorem J, Longnecker R, Jardetzky TS (2009) Structure of Epstein-Barr virus glycoprotein gp42 suggests a mechanism for triggering receptor-activated virus entry. Structure 17:223–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemon SM, Hutt LM, Shaw JE, Li J-LH, Pagano JS (1977) Replication of EBV in epithelial cells during infectious mononucleosis. Nature 268:268–270

    Article  CAS  PubMed  Google Scholar 

  • Levine J, Pflugfelder SC, Yen M, Crouse CA, Atherton SS (1990) Detection of the complement (CD21)/Epstein-Barr virus receptor in human lacrimal gland and ocular surface epithelia. Reg Immunol 3:164–170

    PubMed  Google Scholar 

  • Li QX, Young LS, Niedobitek G, Dawson CW, Birkenbach M, Wang F, Rickinson AB (1992) Epstein-Barr virus infection and replication in a human epithelial system. Nature 356:347–350

    Article  CAS  PubMed  Google Scholar 

  • Li QX, Turk SM, Hutt-Fletcher LM (1995) The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol 69:3987–3994

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li QX, Spriggs MK, Kovats S, Turk SM, Comeau MR, Nepom B, Hutt-Fletcher LM (1997) Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71:4657–4662

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lo KW, Chung GT, To KF (2012) Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 22:79–86

    Article  CAS  PubMed  Google Scholar 

  • Martin DR, Yuryev A, Kalli KR, Fearon DT, Ahearn JM (1991) Determination of the structural basis for selective binding of Epstein-Barr virus to human complement receptor type 2. J Exp Med 174:1299–1311

    Article  CAS  PubMed  Google Scholar 

  • Matsuura H, Kirschner AN, Longnecker R, Jardetzky TS (2010) Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc Natl Acad Sci USA 107:22641–22646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McShane MP, Longnecker R (2004) Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proc Natl Acad Sci USA 101:17474–17479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller N, Hutt-Fletcher LM (1992) Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol 66:3409–3414

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore MD, DiScipio RG, Cooper NR, Nemerow GR (1989) Hydrodynamic, electron microscopic and ligand binding analysis of the Epstein-Barr virus/C3dg receptor (CR2). J Biol Chem 34:20576–20582

    Google Scholar 

  • Mullen MM, Haan KM, Longnecker R, Jardetzky TS (2002) Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol Cell 9:375–385

    Article  CAS  PubMed  Google Scholar 

  • Nemerow GR, Cooper NR (1984) Early events in the infection of human B lymphocytes by Epstein-Barr virus. Virology 132:186–198

    Article  CAS  PubMed  Google Scholar 

  • Nemerow GR, Mold C, Schwend VK, Tollefson V, Cooper NR (1987) Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol 61:1416–1420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nemerow GR, Houghton RA, Moore MD, Cooper NR (1989) Identification of the epitope in the major envelope proteins of Epstein-Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell 56:369–377

    Article  CAS  PubMed  Google Scholar 

  • Niedobitek G, Herbst H, Stein H (1989) Epstein-Barr virus/complement receptor and epithelial cells. Lancet 2:110

    Article  CAS  PubMed  Google Scholar 

  • Niedobitek G, Young LS, Lau R, Brooks L, Greenspan D, Greenspan JS, Rickinson AB (1991) Epstein-Barr virus infection in oral hairy leukoplakia: virus replication in the absence of a detectable latent phase. J Gen Virol 72:3035–3146

    Article  PubMed  Google Scholar 

  • Ogembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg R, Fingeroth JD (2013) Human complement receptor type1/CD35 is an Epstein-Barr virus receptor. Cell Rep. 3:1–15

    Article  Google Scholar 

  • Reem A-D, Mooney N, Charron D (2004) MHC class II signaling in antigen-presenting cells. Curr Opin Immunol 16:108–113

    Article  Google Scholar 

  • Roche S, Albertini AAV, Lepault S, Bressanelli S, Gaudin Y (2008) Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cell Mol Life Sci 65:1716–1728

    Article  CAS  PubMed  Google Scholar 

  • Sathiyamoorthy K, Jiang J, Hu YX, Rowe CL, Mohl BS, Chen J, Jiang W, Mellins ED, Longnecker R, Zhou ZH, Jardetzky TS (2014) Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog 10:e1004309

    Article  PubMed Central  PubMed  Google Scholar 

  • Shannon-Lowe C, Rowe M (2011) Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog 7:e1001338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shannon-Lowe C, Baldwin G, Feederle R, Bell AI, Rickinson A, Delecluse H-J (2005) Epstein-Barr virus induced B-cell transformation: quantitating events from virus binding to cell outgrowth. J Gen Virol 86:3009–3019

    Article  CAS  PubMed  Google Scholar 

  • Shannon-Lowe CD, Neuhierl B, Baldwin G, Rickinson AB, Delecluse H-J (2006) Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci USA 103:7065–7070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shannon-Lowe C, Adland A, Bell AI, Delecluse HJ, Rickinson AB, Rowe M (2009) Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol 83:7749–7760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva AL, Omerovic J, Jardetzky TS, Longnecker R (2004) Mutational analysis of Epstein-Barr virus glycoprotein gp42 reveals functional domains not involved in receptor binding but required for membrane fusion. J Virol 78:5946–5956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinclair AJ, Farrell PJ (1995) Host cell requirements for efficient infection of quiescent primary B lymphocytes by Epstein-Barr virus. J Virol 69:5461–5468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sixbey JW (1989) Epstein-Barr virus and epithelial cells. Adv Viral Oncol 8:187–202

    Google Scholar 

  • Sixbey JW, Yao Q-Y (1992) Immunoglobulin A-induced shift of Epstein-barr virus tissue tropism. Science 255:1578–1580

    Article  CAS  PubMed  Google Scholar 

  • Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS (1984) Epstein-Barr virus replication in oropharyngeal epithelial cells. New Engl J Med 310:1225–1230

    Article  CAS  PubMed  Google Scholar 

  • Sorem J, Jardetzky TS, Longnecker R (2009) Cleavage and secretion of Epstein-Barr virus glycoprotein gp42 promote membrane fusion with B lymphocytes. J Virol 83:6664–6672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugano N, Chen W, Roberts ML, Cooper NR (1997) Epstein-Barr virus binding to CD21 activates the initial viral promoter via NFκB induction. J Exp Med 186:731–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szakonyi G, Klein MG, Hannan JP, Young KA, Ma RZ, Asokan R, Holers VM, Chen XS (2006) Structure of the Epstein-Barr virus major envelope glycoprotein. Nat Struct Mol Biol 13:996–1001

    Article  CAS  PubMed  Google Scholar 

  • Talacko AA, Teo CG, Griffin BE, Johnson NW (1991) Epstein-Barr virus receptors but not viral DNA are present in normal and malignant oral epithelium. J Oral Path Med 20:20–25

    Article  CAS  Google Scholar 

  • Tanner J, Weis J, Fearon D, Whang Y, Kieff E (1987) Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping and endocytosis. Cell 50:203–213

    Article  CAS  PubMed  Google Scholar 

  • Tanner JE, Alfieri C, Chatila TA, Diaz-Mitoma F (1996) Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. J Virol 70:570–575

    PubMed Central  CAS  PubMed  Google Scholar 

  • Temple RM, Zhu J, Budgeon LR, Christensen ND, Meyers C, Sample CE (2014) Efficient replication of Epstein-Barr virus in stratified epithelium in vitro. Proc Natl Acad Sci USA 111:16544–16549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas JA, Crawford DH (1989) Epstein-Barr virus/complement receptor and epithelial cells. Lancet 2:449–450

    Google Scholar 

  • Tugizov SM, Berline JW, Palefsky JM (2003) Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med 9:307–314

    Article  CAS  PubMed  Google Scholar 

  • Tugizov SM, Herrera R, Veluppillai P, Greenspan J, Greenspan D, Palefsky JM (2007) Epstein-Barr virus (EBV)-infected monocytes facilitate dissemination of EBV within the oral mucosal epithelium. J Virol 81:5484–5496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tugizov SM, Herrera R, Palefsky JM (2013) Epstein-Barr virus transcytosis through polarized oral epithelial cells. J Virol 87:8179–8194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuveson DA, Ahearn JM, Matsumoto AK, Fearon DT (1991) Molecular interactions of complement receptors on B lymphocytes: a CR1/CR2 complex distinct from CR2/CD19 complex. J Exp Med 173:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Valencia SM, Hutt-Fletcher LM (2012) Important but differential roles for actin in trafficking of Epstein-Barr virus in B cells and epithelial cells. J Virol 86:2–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanarsdall AL, Ryckman BJ, Chase MC, Johnson DC (2008) Human cytomegalovirus glycoproteins gB and gH/gL mediate epithelial cell-cell fusion when expressed either in cis or in trans. J Virol 82:11837–11850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Kenyon WJ, Li QX, Mullberg J, Hutt-Fletcher LM (1998) Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol 72:5552–5558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu L, Hutt-Fletcher LM (2007) Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion. Virology 363:148–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu L, Borza CM, Hutt-Fletcher LM (2005) Mutations of Epstein-Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. J Virol 79:10923–10930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao J, Palefsky JM, Herrera R, Berline J, Tugizov SM (2008) The Epstein-Barr virus BMRF-2 protein facilitates attachment to oral epithelial cells. Virology 370:430–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao J, Palefsky JM, Herrera R, Berline J, Tugizov SM (2009) EBV BMRF-2 facilitates cell-to-cell spread within polarized oral epithelial cells. Virology 388:335–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young LS, Dawson CW, Brown KW, Rickinson AB (1989) Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes. Int J Cancer 43:786–794

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Lau R, Rowe M, Niedobitek G, Packham G, Shanahan F, Rowe DT, Greenspan D, Greenspan JS, Rickinson AB, Farrell PJ (1991) Differentiation-associated expression of the Epstein-Barr virus BZLF1 transactivator protein in oral hairy leukoplakia. J Virol 65:2868–2874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Y (1985) Seroepidemiological studies on nasopharyngeal carcinoma in China. Adv Cancer Res 44:121–138

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Zhang LG, Wu YC, Huang YS, Huang NQ, Li JY, Wang B, Jiang MK, Fang Z, Meng NN (1985) Prospective studies on nasopharyngeal carcinoma in Epstein-Barr virus IgA/VCA antibody-positive persons in Wuzhou City, China. Int J Cancer 36:545–547

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey M. Hutt-Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chesnokova, L.S., Jiang, R., Hutt-Fletcher, L.M. (2015). Viral Entry. In: Münz, C. (eds) Epstein Barr Virus Volume 2. Current Topics in Microbiology and Immunology, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-22834-1_7

Download citation

Publish with us

Policies and ethics