Skip to main content

EBNA2 and Its Coactivator EBNA-LP

  • Chapter
  • First Online:
Epstein Barr Virus Volume 2

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 391))

Abstract

While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this review, we will refer to the primary structure of EBNA2 using the Swiss-Prot data entry of EBV laboratory strain 95-8:P12978.

Abbreviations

CBF1:

C-promoter binding factor

EBNA:

Epstein-Barr virus nuclear antigen

EBNA-LP:

Epstein-Barr virus leader protein

LMP:

Latent membrane protein

LCL:

Lymphoblastoid cell line

LCV:

Lymphocryptovirus

TAD:

Transactivation domain

PML-NB:

Promyelocytic leukemia nuclear body

References

  • Abbot SD, Rowe M, Cadwallader K, Ricksten A, Gordon J, Wang F, Rymo L, Rickinson AB (1990) Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol 64:2126–2134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Adldinger HK, Delius H, Freese UK, Clarke J, Bornkamm GW (1985) A putative transforming gene of Jijoye virus differs from that of Epstein-Barr virus prototypes. Virology 141:221–234

    Article  CAS  PubMed  Google Scholar 

  • Alazard N, Gruffat H, Hiriart E, Sergeant A, Manet E (2003) Differential hyperacetylation of histones H3 and H4 upon promoter-specific recruitment of EBNA2 in Epstein-Barr virus chromatin. J Virol 77:8166–8172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alfieri C, Birkenbach M, Kieff E (1991) Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181:595–608

    Article  CAS  PubMed  Google Scholar 

  • Allan GJ, Rowe DT (1989) Size and stability of the Epstein-Barr virus major internal repeat (IR-1) in Burkitt’s lymphoma and lymphoblastoid cell lines. Virology 173:489–498

    Article  CAS  PubMed  Google Scholar 

  • Allday MJ, Farrell PJ (1994) Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol 68:3491–3498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allday MJ, Crawford DH, Griffin BE (1989) Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70:1755–1764

    Article  CAS  PubMed  Google Scholar 

  • Allday MJ, Crawford DH, Thomas JA (1993) Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol 74(Pt 3):361–369

    Article  CAS  PubMed  Google Scholar 

  • Ansieau S, Leutz A (2002) The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J Biol Chem 277:4906–4910

    Article  CAS  PubMed  Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C et al (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211

    Article  CAS  PubMed  Google Scholar 

  • Bain M, Watson RJ, Farrell PJ, Allday MJ (1996) Epstein-Barr virus nuclear antigen 3C is a powerful repressor of transcription when tethered to DNA. J Virol 70:2481–2489

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bandobashi K, Maeda A, Teramoto N, Nagy N, Szekely L, Taguchi H, Miyoshi I, Klein G, Klein E (2001) Intranuclear localization of the transcription coadaptor CBP/p300 and the transcription factor RBP-Jk in relation to EBNA-2 and -5 in B lymphocytes. Virology 288:275–282

    Article  CAS  PubMed  Google Scholar 

  • Bark-Jones SJ, Webb HM, West MJ (2006) EBV EBNA 2 stimulates CDK9-dependent transcription and RNA polymerase II phosphorylation on serine 5. Oncogene 25:1775–1785

    Article  CAS  PubMed  Google Scholar 

  • Barth S, Liss M, Voss MD, Dobner T, Fischer U, Meister G, Grasser FA (2003) Epstein-Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol 77:5008–5013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boccellato F, Anastasiadou E, Rosato P, Kempkes B, Frati L, Faggioni A, Trivedi P (2007) EBNA2 interferes with the germinal center phenotype by downregulating BCL6 and TCL1 in non-Hodgkin’s lymphoma cells. J Virol 81:2274–2282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bodescot M, Chambraud B, Farrell P, Perricaudet M (1984) Spliced RNA from the IR1-U2 region of Epstein-Barr virus: presence of an open reading frame for a repetitive polypeptide. EMBO J 3:1913–1917

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bodescot M, Perricaudet M, Farrell PJ (1987) A promoter for the highly spliced EBNA family of RNAs of Epstein-Barr virus. J Virol 61:3424–3430

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borestrom C, Zetterberg H, Liff K, Rymo L (2003) Functional interaction of nuclear factor y and sp1 is required for activation of the epstein-barr virus C promoter. J Virol 77:821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bornkamm GW, Hammerschmidt W (2001) Molecular virology of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356:437–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burgstahler R, Kempkes B, Steube K, Lipp M (1995) Expression of the chemokine receptor BLR2/EBI1 is specifically transactivated by Epstein-Barr virus nuclear antigen 2. Biochem Biophys Res Commun 215:737–743

    Article  CAS  PubMed  Google Scholar 

  • Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM, Ewence AE, Li N, Hirozane-Kishikawa T, Hill DE et al (2007) Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA 104:7606–7611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calender A, Cordier M, Billaud M, Lenoir GM (1990) Modulation of cellular gene expression in B lymphoma cells following in vitro infection by Epstein-Barr virus (EBV). Int J Cancer 46:658–663

    Article  CAS  PubMed  Google Scholar 

  • Chabot PR, Raiola L, Lussier-Price M, Morse T, Arseneault G, Archambault J, Omichinski JG (2014) Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH. PLoS Pathog 10:e1004042

    Article  PubMed Central  PubMed  Google Scholar 

  • Cho YG, Gordadze AV, Ling PD, Wang F (1999) Evolution of two types of rhesus lymphocryptovirus similar to type 1 and type 2 Epstein-Barr virus. J Virol 73:9206–9212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cludts I, Farrell PJ (1998) Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol 72:1862–1869

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen JI (1992) A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci USA 89:8030–8034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen JI, Kieff E (1991) An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol 65:5880–5885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dambaugh T, Hennessy K, Chamnankit L, Kieff E (1984) U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci USA 81:7632–7636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dillner J, Kallin B, Alexander H, Ernberg I, Uno M, Ono Y, Klein G, Lerner RA (1986) An Epstein-Barr virus (EBV)-determined nuclear antigen (EBNA5) partly encoded by the transformation-associated Bam WYH region of EBV DNA: preferential expression in lymphoblastoid cell lines. Proc Natl Acad Sci USA 83:6641–6645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Everett RD (2013) The spatial organization of DNA virus genomes in the nucleus. PLoS Pathog 9:e1003386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Everett RD, Chelbi-Alix MK (2007) PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830

    Article  CAS  PubMed  Google Scholar 

  • Fahraeus R, Jansson A, Ricksten A, Sjoblom A, Rymo L (1990) Epstein-Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proc Natl Acad Sci USA 87:7390–7394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finke J, Rowe M, Kallin B, Ernberg I, Rosen A, Dillner J, Klein G (1987) Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt’s lymphoma and lymphoblastoid cell lines. J Virol 61:3870–3878

    PubMed Central  CAS  PubMed  Google Scholar 

  • Folk P, Puta F, Skruzny M (2004) Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways. Cell Mol Life Sci 61:629–640

    Article  CAS  PubMed  Google Scholar 

  • Fuchs KP, Bommer G, Dumont E, Christoph B, Vidal M, Kremmer E, Kempkes B (2001) Mutational analysis of the J recombination signal sequence binding protein (RBP-J)/Epstein-Barr virus nuclear antigen 2 (EBNA2) and RBP-J/notch interaction. Eur J Biochem 268:4639–4646

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Panana EM, Ling PD (1998) Characterization of the CBF2 binding site within the Epstein-Barr virus latency C promoter and its role in modulating EBNA2-mediated transactivation. J Virol 72:693–700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fuentes-Panana EM, Swaminathan S, Ling PD (1999) Transcriptional activation signals found in the Epstein-Barr virus (EBV) latency C promoter are conserved in the latency C promoter sequences from baboon and Rhesus monkey EBV-like lymphocryptoviruses (cercopithicine herpesviruses 12 and 15). J Virol 73:826–833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fuentes-Panana EM, Peng R, Brewer G, Tan J, Ling PD (2000) Regulation of the Epstein-Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol 74:8166–8175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garibal J, Hollville E, Bell AI, Kelly GL, Renouf B, Kawaguchi Y, Rickinson AB, Wiels J (2007) Truncated form of the Epstein-Barr virus protein EBNA-LP protects against caspase-dependent apoptosis by inhibiting protein phosphatase 2A. J Virol 81:7598–7607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh D, Kieff E (1990) cis-acting regulatory elements near the Epstein-Barr virus latent-infection membrane protein transcriptional start site. J Virol 64:1855–1858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gordadze AV, Onunwor CW, Peng R, Poston D, Kremmer E, Ling PD (2004) EBNA2 amino acids 3 to 30 are required for induction of LMP-1 and immortalization maintenance. J Virol 78:3919–3929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grasser FA, Haiss P, Gottel S, Mueller-Lantzsch N (1991) Biochemical characterization of Epstein-Barr virus nuclear antigen 2A. J Virol 65:3779–3788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman SR, Johannsen E, Tong X, Yalamanchili R, Kieff E (1994) The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci USA 91:7568–7572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grundhoff AT, Kremmer E, Tureci O, Glieden A, Gindorf C, Atz J, Mueller-Lantzsch N, Schubach WH, Grasser FA (1999) Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C. J Biol Chem 274:19136–19144

    Article  CAS  PubMed  Google Scholar 

  • Han I, Xue Y, Harada S, Orstavik S, Skalhegg B, Kieff E (2002) Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein-Barr virus nuclear proteins. Mol Cell Biol 22:2136–2146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harada S, Kieff E (1997) Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71:6611–6618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harada S, Yalamanchili R, Kieff E (2001) Epstein-Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. J Virol 75:2482–2487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harth-Hertle ML, Scholz BA, Erhard F, Glaser LV, Dolken L, Zimmer R, Kempkes B (2013) Inactivation of intergenic enhancers by EBNA3A initiates and maintains polycomb signatures across a chromatin domain encoding CXCL10 and CXCL9. PLoS Pathog 9:e1003638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hateboer G, Gennissen A, Ramos YF, Kerkhoven RM, Sonntag-Buck V, Stunnenberg HG, Bernards R (1995) BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J 14:3159–3169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayward SD, Liu J, Fujimuro M (2006) Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Sci STKE 2006:re4

    Google Scholar 

  • Henkel T, Ling PD, Hayward SD, Peterson MG (1994) Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265:92–95

    Article  CAS  PubMed  Google Scholar 

  • Hertle ML, Popp C, Petermann S, Maier S, Kremmer E, Lang R, Mages J, Kempkes B (2009) Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes. PLoS Pathog 5:e1000506

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hsieh JJ, Hayward SD (1995) Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268:560–563

    Article  CAS  PubMed  Google Scholar 

  • Inman GJ, Farrell PJ (1995) Epstein-Barr virus EBNA-LP and transcription regulation properties of pRB, p107 and p53 in transfection assays. J Gen Virol 76(Pt 9):2141–2149

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Ramirez C, Brooks AJ, Forshell LP, Yakimchuk K, Zhao B, Fulgham TZ, Sample CE (2006) Epstein-Barr virus EBNA-3C is targeted to and regulates expression from the bidirectional LMP-1/2B promoter. J Virol 80:11200–11208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin XW, Speck SH (1992) Identification of critical cis elements involved in mediating Epstein-Barr virus nuclear antigen 2-dependent activity of an enhancer located upstream of the viral BamHI C promoter. J Virol 66:2846–2852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jochner N, Eick D, Zimber-Strobl U, Pawlita M, Bornkamm GW, Kempkes B (1996) Epstein-Barr virus nuclear antigen 2 is a transcriptional suppressor of the immunoglobulin mu gene: implications for the expression of the translocated c-myc gene in Burkitt’s lymphoma cells. EMBO J 15:375–382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johannsen E, Koh E, Mosialos G, Tong X, Kieff E, Grossman SR (1995) Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J Virol 69:253–262

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johansen LM, Deppmann CD, Erickson KD, Coffin WF 3rd, Thornton TM, Humphrey SE, Martin JM, Taparowsky EJ (2003) EBNA2 and activated Notch induce expression of BATF. J Virol 77:6029–6040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B (1999) The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol 73:4481–4484

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kashuba E, Mattsson K, Pokrovskaja K, Kiss C, Protopopova M, Ehlin-Henriksson B, Klein G, Szekely L (2003) EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells. Int J Cancer 105:644–653

    Article  CAS  PubMed  Google Scholar 

  • Kelly G, Bell A, Rickinson A (2002) Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8:1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Kempkes B, Zimber-Strobl U, Eissner G, Pawlita M, Falk M, Hammerschmidt W, Bornkamm GW (1996) Epstein-Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein-Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol 77:227–237

    Article  CAS  PubMed  Google Scholar 

  • Kitay MK, Rowe DT (1996) Cell cycle stage-specific phosphorylation of the Epstein-Barr virus immortalization protein EBNA-LP. J Virol 70:7885–7893

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knutson JC (1990) The level of c-fgr RNA is increased by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. J Virol 64:2530–2536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kovall RA (2007) Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17:117–127

    Article  CAS  PubMed  Google Scholar 

  • Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 23:3441–3451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurth J, Hansmann ML, Rajewsky K, Kuppers R (2003) Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci USA 100:4730–4735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwiatkowski B, Chen SY, Schubach WH (2004) CKII site in Epstein-Barr virus nuclear protein 2 controls binding to hSNF5/Ini1 and is important for growth transformation. J Virol 78:6067–6072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai EC (2002) Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 3:840–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laux G, Adam B, Strobl LJ, Moreau-Gachelin F (1994a) The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J 13:5624–5632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laux G, Dugrillon F, Eckert C, Adam B, Zimber-Strobl U, Bornkamm GW (1994b) Identification and characterization of an Epstein-Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. J Virol 68:6947–6958

    PubMed Central  CAS  PubMed  Google Scholar 

  • Le Roux A, Kerdiles B, Walls D, Dedieu JF, Perricaudet M (1994) The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205:596–602

    Article  PubMed  Google Scholar 

  • Lee JM, Lee KH, Weidner M, Osborne BA, Hayward SD (2002) Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis. Proc Natl Acad Sci USA 99:11878–11883 Epub 12002 Aug 11823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G, Lu J, Lin F et al (2000) Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289:1159–1164

    Article  CAS  PubMed  Google Scholar 

  • Ling PD, Hayward SD (1995) Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk. J Virol 69:1944–1950

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ling PD, Hsieh JJ, Ruf IK, Rawlins DR, Hayward SD (1994) EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. J Virol 68:5375–5383

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, Yang WH, Zhao B, Kieff E, Bloch KD et al (2005) Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J 24:3565–3575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ling PD, Tan J, Peng R (2009) Nuclear-cytoplasmic shuttling is not required for the Epstein-Barr virus EBNA-LP transcriptional coactivation function. J Virol 83:7109–7116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu CD, Chen YL, Min YL, Zhao B, Cheng CP, Kang MS, Chiu SJ, Kieff E, Peng CW (2012) The nuclear chaperone nucleophosmin escorts an Epstein-Barr Virus nuclear antigen to establish transcriptional cascades for latent infection in human B cells. PLoS Pathog 8:e1003084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu CD, Cheng CP, Fang JS, Chen LC, Zhao B, Kieff E, Peng CW (2013) Modulation of Epstein-Barr virus nuclear antigen 2-dependent transcription by protein arginine methyltransferase 5. Biochem Biophys Res Commun 430:1097–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucchesi W, Brady G, Dittrich-Breiholz O, Kracht M, Russ R, Farrell PJ (2008) Differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2. J Virol 82:7456–7466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macsween KF, Crawford DH (2003) Epstein-Barr virus-recent advances. Lancet Infect Dis 3:131–140

    Article  PubMed  Google Scholar 

  • Maier S, Santak M, Mantik A, Grabusic K, Kremmer E, Hammerschmidt W, Kempkes B (2005) A somatic knockout of CBF1 in a human B-cell line reveals that induction of CD21 and CCR7 by EBNA-2 is strictly CBF1 dependent and that downregulation of immunoglobulin M is partially CBF1 independent. J Virol 79:8784–8792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maier S, Staffler G, Hartmann A, Hock J, Henning K, Grabusic K, Mailhammer R, Hoffmann R, Wilmanns M, Lang R et al (2006) Cellular target genes of Epstein-Barr virus nuclear antigen 2. J Virol 80:9761–9771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall D, Sample C (1995) Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol 69:3624–3630

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCann EM, Kelly GL, Rickinson AB, Bell AI (2001) Genetic analysis of the Epstein-Barr virus-coded leader protein EBNA-LP as a coactivator of EBNA2 function. J Gen Virol 82:3067–3079

    Article  CAS  PubMed  Google Scholar 

  • McClellan MJ, Khasnis S, Wood CD, Palermo RD, Schlick SN, Kanhere AS, Jenner RG, West MJ (2012) Downregulation of integrin receptor-signaling genes by Epstein-Barr virus EBNA 3C via promoter-proximal and -distal binding elements. J Virol 86:5165–5178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClellan MJ, Wood CD, Ojeniyi O, Cooper TJ, Kanhere A, Arvey A, Webb HM, Palermo RD, Harth-Hertle ML, Kempkes B et al (2013) Modulation of enhancer looping and differential gene targeting by epstein-barr virus transcription factors directs cellular reprogramming. PLoS Pathog 9:e1003636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meitinger C, Strobl LJ, Marschall G, Bornkamm GW, Zimber-Strobl U (1994) Crucial sequences within the Epstein-Barr virus TP1 promoter for EBNA2-mediated transactivation and interaction of EBNA2 with its responsive element. J Virol 68:7497–7506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mohan J, Dement-Brown J, Maier S, Ise T, Kempkes B, Tolnay M (2006) Epstein-Barr virus nuclear antigen 2 induces FcRH5 expression through CBF1. Blood 107:4433–4439

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Sliz P, Song L, Aster JC, Blacklow SC (2006) Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124:973–983

    Article  CAS  PubMed  Google Scholar 

  • Nitsche F, Bell A, Rickinson A (1997) Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71:6619–6628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, Staege MS, Brielmeier M, Ellwart J, Kohlhuber F, Bornkamm GW et al (2000) Cell cycle activation by c-myc in a Burkitt lymphoma model cell line. Int J Cancer 87:787–793

    Article  CAS  PubMed  Google Scholar 

  • Pajic A, Staege MS, Dudziak D, Schuhmacher M, Spitkovsky D, Eissner G, Brielmeier M, Polack A, Bornkamm GW (2001) Antagonistic effects of c-myc and Epstein-Barr virus latent genes on the phenotype of human B cells. Int J Cancer 93:810–816

    Article  CAS  PubMed  Google Scholar 

  • Pegman PM, Smith SM, D’Souza BN, Loughran ST, Maier S, Kempkes B, Cahill PA, Simmons MJ, Gelinas C, Walls D (2006) Epstein-Barr virus nuclear antigen 2 trans-activates the cellular antiapoptotic bfl-1 gene by a CBF1/RBPJ kappa-dependent pathway. J Virol 80:8133–8144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng R, Gordadze AV, Fuentes Panana EM, Wang F, Zong J, Hayward GS, Tan J, Ling PD (2000a) Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74:379–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng R, Tan J, Ling PD (2000b) Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol 74:9953–9963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng CW, Xue Y, Zhao B, Johannsen E, Kieff E, Harada S (2004a) Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci USA 101:1033–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng CW, Zhao B, Kieff E (2004b) Four EBNA2 domains are important for EBNALP coactivation. J Virol 78:11439–11442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng R, Moses SC, Tan J, Kremmer E, Ling PD (2005) The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol 79:4492–4505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng CW, Zhao B, Chen HC, Chou ML, Lai CY, Lin SZ, Hsu HY, Kieff E (2007) Hsp72 up-regulates Epstein-Barr virus EBNALP coactivation with EBNA2. Blood 109:5447–5454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petti L, Sample C, Kieff E (1990) Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176:563–574

    Article  CAS  PubMed  Google Scholar 

  • Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, Drouin J (1997) Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 17:5946–5951

    PubMed Central  CAS  PubMed  Google Scholar 

  • Polack A, Hortnagel K, Pajic A, Christoph B, Baier B, Falk M, Mautner J, Geltinger C, Bornkamm GW, Kempkes B (1996) c-myc activation renders proliferation of Epstein-Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci USA 93:10411–10416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Portal D, Zhao B, Calderwood MA, Sommermann T, Johannsen E, Kieff E (2011) EBV nuclear antigen EBNALP dismisses transcription repressors NCoR and RBPJ from enhancers and EBNA2 increases NCoR-deficient RBPJ DNA binding. Proc Natl Acad Sci USA 108:7808–7813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Portal D, Zhou H, Zhao B, Kharchenko PV, Lowry E, Wong L, Quackenbush J, Holloway D, Jiang S, Lu Y et al (2013) Epstein-Barr virus nuclear antigen leader protein localizes to promoters and enhancers with cell transcription factors and EBNA2. Proc Natl Acad Sci USA 110:18537–18542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puglielli MT, Woisetschlaeger M, Speck SH (1996) oriP is essential for EBNA gene promoter activity in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol 70:5758–5768

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers RP, Woisetschlaeger M, Speck SH (1990) Alternative splicing dictates translational start in Epstein-Barr virus transcripts. EMBO J 9:2273–2277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakai T, Taniguchi Y, Tamura K, Minoguchi S, Fukuhara T, Strobl LJ, Zimber-Strobl U, Bornkamm GW, Honjo T (1998) Functional replacement of the intracellular region of the Notch1 receptor by Epstein-Barr virus nuclear antigen 2. J Virol 72:6034–6039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sample J, Hummel M, Braun D, Birkenbach M, Kieff E (1986) Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci USA 83:5096–5100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinclair AJ, Palmero I, Peters G, Farrell PJ (1994) EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J 13:3321–3328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sjoblom A, Jansson A, Yang W, Lain S, Nilsson T, Rymo L (1995a) PU box-binding transcription factors and a POU domain protein cooperate in the Epstein-Barr virus (EBV) nuclear antigen 2-induced transactivation of the EBV latent membrane protein 1 promoter. J Gen Virol 76:2679–2692

    Article  PubMed  Google Scholar 

  • Sjoblom A, Nerstedt A, Jansson A, Rymo L (1995b) Domains of the Epstein-Barr virus nuclear antigen 2 (EBNA2) involved in the transactivation of the latent membrane protein 1 and the EBNA Cp promoters. J Gen Virol 76:2669–2678

    Article  PubMed  Google Scholar 

  • Sjoblom A, Yang W, Palmqvist L, Jansson A, Rymo L (1998) An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein-Barr virus LMP1 gene promoter. J Virol 72:1365–1376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skare J, Edson C, Farley J, Strominger JL (1982) The B95-8 isolate of Epstein-Barr virus arose from an isolate with a standard genome. J Virol 44:1088–1091

    PubMed Central  CAS  PubMed  Google Scholar 

  • Speck SH, Pfitzner A, Strominger JL (1986) An Epstein-Barr virus transcript from a latently infected, growth-transformed B-cell line encodes a highly repetitive polypeptide. Proc Natl Acad Sci USA 83:9298–9302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spender LC, Cornish GH, Rowland B, Kempkes B, Farrell PJ (2001) Direct and indirect regulation of cytokine and cell cycle proteins by ebna-2 during Epstein-Barr virus infection. J Virol 75:3537–3546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spender LC, Cornish GH, Sullivan A, Farrell PJ (2002) Expression of transcription factor AML-2 (RUNX3, CBF(alpha)-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J Virol 76:4919–4927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spender LC, Whiteman HJ, Karstegl CE, Farrell PJ (2005) Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells. Oncogene 24:1873–1881

    Article  CAS  PubMed  Google Scholar 

  • Spender LC, Lucchesi W, Bodelon G, Bilancio A, Karstegl CE, Asano T, Dittrich-Breiholz O, Kracht M, Vanhaesebroeck B, Farrell PJ (2006) Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J Gen Virol 87:2859–2867

    Article  CAS  PubMed  Google Scholar 

  • Strobl LJ, Hofelmayr H, Marschall G, Brielmeier M, Bornkamm GW, Zimber-Strobl U (2000) Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J Virol 74:1727–1735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung NS, Kenney S, Gutsch D, Pagano JS (1991) EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus. J Virol 65:2164–2169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szekely L, Pokrovskaja K, Jiang WQ, de The H, Ringertz N, Klein G (1996) The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J Virol 70:2562–2568

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82

    Article  CAS  PubMed  Google Scholar 

  • Tierney RJ, Kao KY, Nagra JK, Rickinson AB (2011) Epstein-Barr virus BamHI W repeat number limits EBNA2/EBNA-LP coexpression in newly infected B cells and the efficiency of B-cell transformation: a rationale for the multiple W repeats in wild-type virus strains. J Virol 85:12362–12375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tobollik S, Meyer L, Buettner M, Klemmer S, Kempkes B, Kremmer E, Niedobitek G, Jungnickel B (2006) Epstein-Barr virus nuclear antigen 2 inhibits AID expression during EBV-driven B-cell growth. Blood 108:3859–3864

    Article  CAS  PubMed  Google Scholar 

  • Tong X, Yalamanchili R, Harada S, Kieff E (1994) The EBNA-2 arginine-glycine domain is critical but not essential for B-lymphocyte growth transformation; the rest of region 3 lacks essential interactive domains. J Virol 68:6188–6197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tong X, Drapkin R, Reinberg D, Kieff E (1995a) The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci USA 92:3259–3263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong X, Drapkin R, Yalamanchili R, Mosialos G, Kieff E (1995b) The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15:4735–4744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tong X, Wang F, Thut CJ, Kieff E (1995c) The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69:585–588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tzellos S, Farrell PJ (2012) Epstein-Barr virus sequence variation-biology and disease. Pathogens 1:156–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzellos S, Correia PB, Karstegl CE, Cancian L, Cano-Flanagan J, McClellan MJ, West MJ, Farrell PJ (2014) A single amino acid in EBNA-2 determines superior B lymphoblastoid cell line growth maintenance by Epstein-Barr virus type 1 EBNA-2. J Virol 88:8743–8753

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Voss MD, Hille A, Barth S, Spurk A, Hennrich F, Holzer D, Mueller-Lantzsch N, Kremmer E, Grasser FA (2001) Functional cooperation of Epstein-Barr virus nuclear antigen 2 and the survival motor neuron protein in transactivation of the viral LMP1 promoter. J Virol 75:11781–11790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waltzer L, Logeat F, Brou C, Israel A, Sergeant A, Manet E (1994) The human J kappa recombination signal sequence binding protein (RBP-J kappa) targets the Epstein-Barr virus EBNA2 protein to its DNA responsive elements. EMBO J 13:5633–5638

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F (2013). Nonhuman primate models for Epstein-Barr virus infection. Curr Opin Virol

    Google Scholar 

  • Wang F, Gregory CD, Rowe M, Rickinson AB, Wang D, Birkenbach M, Kikutani H, Kishimoto T, Kieff E (1987a) Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci USA 84:3452–3456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Petti L, Braun D, Seung S, Kieff E (1987b) A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. J Virol 61:945–954

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Tsang SF, Kurilla MG, Cohen JI, Kieff E (1990) Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64:3407–3416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Grossman SR, Kieff E (2000) Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci USA 97:430–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson JJ, Kovall RA (2006) Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124:985–996

    Article  CAS  PubMed  Google Scholar 

  • Woisetschlaeger M, Yandava CN, Furmanski LA, Strominger JL, Speck SH (1990) Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci USA 87:1725–1729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woisetschlaeger M, Jin XW, Yandava CN, Furmanski LA, Strominger JL, Speck SH (1991) Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc Natl Acad Sci USA 88:3942–3946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu DY, Kalpana GV, Goff SP, Schubach WH (1996) Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol 70:6020–6028

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu DY, Krumm A, Schubach WH (2000) Promoter-specific targeting of human SWI-SNF complex by Epstein-Barr virus nuclear protein 2. J Virol 74:8893–8903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu DY, Tkachuck DC, Roberson RS, Schubach WH (2002) The human SNF5/INI1 protein facilitates the function of the growth arrest and DNA damage-inducible protein (GADD34) and modulates GADD34-bound protein phosphatase-1 activity. J Biol Chem 277:27706–27715

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Aittomaki S, Pesu M, Carter K, Saarinen J, Kalkkinen N, Kieff E, Silvennoinen O (2002) Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J 21:4950–4958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokoyama A, Kawaguchi Y, Kitabayashi I, Ohki M, Hirai K (2001a) The conserved domain CR2 of Epstein-Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology 279:401–413

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama A, Tanaka M, Matsuda G, Kato K, Kanamori M, Kawasaki H, Hirano H, Kitabayashi I, Ohki M, Hirai K et al (2001b) Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol 75:5119–5128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yue W, Davenport MG, Shackelford J, Pagano JS (2004) Mitosis-specific hyperphosphorylation of Epstein-Barr virus nuclear antigen 2 suppresses its function. J Virol 78:3542–3552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Sample CE (2000) Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol 74:5151–5160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Maruo S, Cooper A, Chase MR, Johannsen E, Kieff E, Cahir-McFarland E (2006) RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci USA 103:1900–1905

    Google Scholar 

  • Zhao B, Zou J, Wang H, Johannsen E, Peng CW, Quackenbush J, Mar JC, Morton CC, Freedman ML, Blacklow SC et al (2011) Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci USA 108:14902–14907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou S, Fujimuro M, Hsieh JJ, Chen L, Hayward SD (2000) A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol 74:1939–1947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimber-Strobl U, Suentzenich KO, Laux G, Eick D, Cordier M, Calender A, Billaud M, Lenoir GM, Bornkamm GW (1991) Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. J Virol 65:415–423

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zimber-Strobl U, Kremmer E, Grasser F, Marschall G, Laux G, Bornkamm GW (1993) The Epstein-Barr virus nuclear antigen 2 interacts with an EBNA2 responsive cis-element of the terminal protein 1 gene promoter. EMBO J 12:167–175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zimber-Strobl U, Strobl LJ, Meitinger C, Hinrichs R, Sakai T, Furukawa T, Honjo T, Bornkamm GW (1994) Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila Suppressor of Hairless. EMBO J 13:4973–4982

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of BK is supported by the HELENA graduate school of the Helmholtz Center Munich and the Deutsche Krebshilfe (grant 109258). PDL is supported by NIH grant 5R01AI080681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Kempkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kempkes, B., Ling, P.D. (2015). EBNA2 and Its Coactivator EBNA-LP. In: Münz, C. (eds) Epstein Barr Virus Volume 2. Current Topics in Microbiology and Immunology, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-22834-1_2

Download citation

Publish with us

Policies and ethics