Skip to main content

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

Neutron powder diffraction is extensively used for the development and fundamental understanding of metal hydrides. In this chapter we will first present the basic principles of neutron diffraction. This will be followed by a discussion about the two main neutron sources used for diffraction experiments: reactors and spallation sources. Analysis of diffraction patterns by Rietveld refinement will be discussed next: we will expose the principle of the method and the significance of various parameters to be refined. The special case of locating the hydrogen using neutron powder diffraction will be discussed in a separate section. The final section is a presentation of a few selected examples of the application of neutron powder diffraction to metal hydrides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Tables for Crystallography. International Union of Crystallography. Volume A, Space-group symmetry (2006). doi:10.1107/97809553602060000100

  2. C. Giacovazzo, The diffraction of X-rays by crystals, in Fundamentals of Crystallography, ed. by C. Giacovazzo. International Union of Crystallography Texts on Crystallography (Oxford University Press, Oxford, 1992)

    Google Scholar 

  3. M.D. Graef, M.E. McHenry, Structure of Materials (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  4. T. Chatterji (ed.), Neutron Scattering from Magnetic Materials (Elsevier, Amsterdam, 2005)

    Google Scholar 

  5. J.S.O. Evans, X-ray and neutron powder diffraction, in Encyclopedia of Supramolecular Chemistry, ed. by J.L. Atwood and J.W. Steed (Marcel Dekker, New York, Basel 2004)

    Google Scholar 

  6. R.E. Dinnebier, S.J.L. Billinge, Powder Diffraction: Theory and Practice (RCS, Cambridge, 2008)

    Google Scholar 

  7. V. Pecharsky, P. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd edn: 33 Tab (Springer, New York, 2009)

    Google Scholar 

  8. U. Kolb, K. Shankland, L. Meshi, A. Avilov, W.I.F. David (eds.), Uniting Electron Crystallography and Powder Diffraction (Springer, Dordretch, 2012)

    Google Scholar 

  9. P. Scardi, M. Leoni, Whole powder pattern modelling. Acta Crystallogr A 58, 190–200 (2002)

    Article  Google Scholar 

  10. www.neutronsources.org

  11. E.H. Kisi, C.J. Howard, Applications of Neutron Powder Diffraction (Oxford University Press, Oxford, 2008)

    Google Scholar 

  12. O.R.N. Laboratory, Powgen Experiment. In. Private communication from A. Huq, Spallation Neutron Source, Oak Ridge National Laboratory

    Google Scholar 

  13. A. Huq, J.P. Hodges, O. Gourdon, L. Heroux, Powgen: a third-generation high-resolution high-throughput powder diffraction instrument at the Spallation NeutronSource. Z. Kristallogr. Proc. 1, 127–135 (2011)

    Google Scholar 

  14. K. Iwase, K. Mori, Y. Hishinuma, Y. Hasegawa, S. Iimura, H. Ishikawa, T. Kamoshida, T. Ishigaki, Development of sample holder for in situ neutron measurement of hydrogen absorbing alloy. Int. J. Hydrogen Energy 36(4), 3062–3066 (2011). doi:10.1016/j.ijhydene.2010.11.044

    Article  Google Scholar 

  15. R. Flacau, J. Bolduc, T. Bibienne, J. Huot, H. Fritzsche, Performance of Cu-coated vanadium cans for in situ neutron powder diffraction experiments on hydrogen storage materials. J. Appl. Crystallogr. 45(5), 902–905 (2012). doi:10.1107/s002188981202938x

    Article  Google Scholar 

  16. E.M. Gray, I.F. Bailey, Embrittlement of titanium-zirconium ‘null-matrix’ alloy by deuterium. J. Neutron Res. 16(3/4), 127–132 (2008)

    Article  Google Scholar 

  17. M.P. Pitt, C.J. Webb, M. Paskevicius, D. Sheptyakov, C.E. Buckley, E.M. Gray, In situ neutron diffraction study of the deuteration of isotopic Mg11B2. J. Phys. Chem. C 115(45), 22669–22679 (2011). doi:10.1021/jp208355s

    Article  Google Scholar 

  18. B.T.M. Willis, C.J. Carlile, Experimental Neutron Scattering (OUP, Oxford, 2013)

    Google Scholar 

  19. R.H. Wiswall, J.J. Reilly, Inverse hydrogen isotope effects in some metal hydride systems. Inorg. Chem. 11, 1691 (1972)

    Article  Google Scholar 

  20. M.T. Weller, P.F. Henry, V.P. Ting, C.C. Wilson, Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction. Chem. Commun. 21, 2973–2989 (2009). doi:10.1039/b821336d

    Article  Google Scholar 

  21. R.A. Young, The Rietveld method, in IUCr Monographs on Crystallography-5, ed. by R.A. Young (Oxford University Press, Oxford, 1993), p. 298

    Google Scholar 

  22. R. Dinnebier, M. Müller, Modern Rietveld refinement, a practical guide, in Modern Diffraction Methods, ed. by E.J. Mittemeijer, U. Weizel (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), pp. 27–60

    Google Scholar 

  23. J.C. Taylor, I. Hinczak, Rietveld Made Easy (Sietronics, Canberra, 2004)

    Google Scholar 

  24. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  25. G. Caglioti, A. Paoletti, F.P. Ricci, On resolution and luminosity of a neutron diffraction spectrometer for single crystal analysis. Nucl. Instrum. Methods 9(2), 195–198 (1960). doi:10.1016/0029-554x(60)90101-4

    Article  Google Scholar 

  26. G. Caglioti, A. Paoletti, F.P. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods 3(4), 223–228 (1958). doi:10.1016/0369-643x(58)90029-x

    Article  Google Scholar 

  27. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)

    Google Scholar 

  28. R.J. Hill, I.C. Madsen, The effect of profile step counting time on the determination of crystal-structure parameters by X-ray Rietveld analysis. J. Appl. Crystallogr. 17(OCT), 297–306 (1984). doi:10.1107/s0021889884011547

    Google Scholar 

  29. R.J. Hill, I.C. Madsen, Data collection strategies for constant wavelength Rietveld analysis. Powder Diffract. 2(3), 146 (1987)

    Article  Google Scholar 

  30. A. Furrer, J. Mesot, T. Strässle, Neutron Scattering in Condensed Matter Physics (World Scientific, Singapore, 2009)

    Google Scholar 

  31. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3(3), 26–37 (1992)

    Article  Google Scholar 

  32. L. Koester, H. Rauch, E. Seymann, Neutron-scattering lengths – a survey of experimental-data and methods. At. Data Nucl. Data Tables 49(1), 65–120 (1991). doi:10.1016/0092-640x(91)90012-s

    Article  Google Scholar 

  33. H. Kohlmann, Solid-state structures and properties of Europium and Samarium hydrides. Eur. J. Inorg. Chem. 2010(18), 2582–2593 (2010). doi:10.1002/ejic.201000107

    Google Scholar 

  34. D. Schmitt, B. Ouladdiaf, Absorption correction for annular cylindrical samples in powder neutron diffraction. J. Appl. Crystallogr. 31(4), 620–624 (1998). doi:10.1107/S0021889898002672

    Article  Google Scholar 

  35. M. Bowden, M. Ryan, Absorption correction for cylindrical and annular specimens and their containers or supports. J. Appl. Crystallogr. 43(4), 693–698 (2010). doi:10.1107/S0021889810021114

    Article  Google Scholar 

  36. R.A. Young, Introduction to the Rietveld method, in The Rietveld Method, ed. by R.A. Young (Oxford University Press, Oxford, 1993)

    Google Scholar 

  37. G. Will, Powder Diffraction: The Rietveld Method and the Two-Stage Method (Springer, Berlin, Heidelberg, 2006)

    Google Scholar 

  38. R.B.V. Dreele, Neutron powder diffraction, in Modern Powder Diffraction, ed. by D.L. Bish, J.E. Post. Reviews in Mineralogy, vol 20 (Mineralogical Society of America, Chantilly, 1989)

    Google Scholar 

  39. R.J. Roe, Description of crystallite orientation in polycrystalline materials .3. General solution to pole figure inversion. J. Appl. Phys. 36(6), 2024–2031 (1965). doi:10.1063/1.1714396

    Google Scholar 

  40. H.J. Bunge, Zur Darstellung Allgemeiner Texturen. Zeitschrift Fur Metallkunde 56(12), 872–874 (1965)

    Google Scholar 

  41. N.C. Popa, Microstructural properties: texture and macrostress effects, in Powder Diffraction, Theory and Practice, ed. by R.E. Dinnebier, S.J.L. Billinge (RSC Publishing, Cambridge, 2008)

    Google Scholar 

  42. W.I.F. David, K. Shankland, L.B. McCusker, C. Bärlocher (eds.), Structure Determination from Powder Diffraction Data (Oxford University Press, Oxford, 2006)

    Google Scholar 

  43. R.B.V. Dreele, J.D. Jorgensen, C.G. Windsor, Rietveld refinement with spallation neutron powder diffraction data. J. Appl. Crystallogr. 15, 581–589 (1982)

    Article  Google Scholar 

  44. E.J. Mittemeijer, U. Welzel, Diffraction line-profile analysis, in Modern Diffraction Methods (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), pp. 87–126

    Google Scholar 

  45. R.L. Snyder, Analytical profile fitting of X-ray powder diffraction profiles in Rietveld analysis, in The Rietveld Method. International Union of Crystallography, ed. by R.A. Young (Oxford Science Publications, Oxford, 1993)

    Google Scholar 

  46. J.W. Richardson, Background modeling in Rietveld analysis, in The Rietveld Method. International Union of Crystallography, ed. by R.A. Young (Oxford Science Publication, Oxford, 1993)

    Google Scholar 

  47. E. Prince, Mathematical aspects of Rietveld refinement, in The Rietveld Method. International Union of Crystallography, ed. by R.A. Young (Oxford Science Publications, Oxford, 1993)

    Google Scholar 

  48. B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffract. 21(1), 67–70 (2006)

    Article  Google Scholar 

  49. B. Efron, R. Tibshirani, Bootstrap Methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1(1), 54–75 (1986). doi:10.2307/2245500

    Article  Google Scholar 

  50. R. Černý, D.B. Ravnsbaek, P. Schouwink, Y. Filinchuk, N. Penin, J. Teyssier, L. Smrcok, T.R. Jensen, Potassium zinc borohydrides containing triangular Zn(BH4)3 and tetrahedral Zn(BH4)xCl4-x 2− anions. J. Phys. Chem. C 116(1), 1563–1571 (2012). doi:10.1021/jp209848r

    Article  Google Scholar 

  51. I. Lindemann, R. Domènech Ferrer, L. Dunsch, Y. Filinchuk, R. Černý, H. Hagemann, V. D’Anna, L.M. Lawson Daku, L. Schultz, O. Gutfleisch, Al3Li4(BH4)13: a complex double-cation borohydride with a new structure. Chem. Eur. J. 16(29), 8707–8712 (2010). doi:10.1002/chem.201000831

    Google Scholar 

  52. S.A. Howard, K.D. Preston, Profile fitting of powder diffraction patterns, in Modern Powder Diffraction, ed. by D.L. Bish, J.E. Post (Mineralogical Society of America, Chantilly, 1989)

    Google Scholar 

  53. D.B. Ravnsbæk, Y. Filinchuk, R. Černý, T.R. Jensen, Powder diffraction methods for studies of borohydride-based energy storage materials. Zeitschrift fur Kristallographie 225(12), 557–569 (2010)

    Article  Google Scholar 

  54. J.-P. Soulié, G. Renaudin, R. Černý, K. Yvon, Lithium boro-hydride LiBH4 I. Crystal structure. J. Alloys Compd. 346, 200–205 (2002)

    Article  Google Scholar 

  55. Y. Filinchuk, D. Chernysov, R. Černý, Lightest borohydride probed by synchrotron X-ray diffraction: experiment calls for a new theoretical revision. J. Phys. Chem. C 112, 10579–10584 (2008)

    Article  Google Scholar 

  56. P. Schouwink, R. Cerný, Complex hydrides – when powder diffraction needs help. CHIMIA Int. J. Chem. 68(1), 38–44 (2014). doi:10.2533/chimia.2014.38

    Article  Google Scholar 

  57. R. Černý, Solving crystal structures of metal and chemical hydrides. Zeitschrift Fur Kristallographie 223(10), 607–616 (2008). doi:10.1524/zkri.2008.1017

    Google Scholar 

  58. R. Černý, Y. Filinchuk, Complex inorganic structures from powder diffraction: case of tetrahydroborates of light metals. Zeitschrift Fur Kristallographie 226(12), 882–891 (2011). doi:10.1524/zkri.2011.1409

    Article  Google Scholar 

  59. V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 14(7), 3576–3586 (2014). doi:10.1021/cg500498k

    Article  Google Scholar 

  60. D.G. Westlake, Hydrides of intermetallic compounds: a review of stabilities, stoichiometries and preferred hydrogen sites. J. Less-Common Met. 91(1), 1–20 (1983)

    Article  Google Scholar 

  61. A.C.Z. Switendick, Phys. Chem. N.F. 117, 89–112 (1979)

    Article  Google Scholar 

  62. R. Černý, V. Favre-Nicolin, Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives. Zeitschrift Fur Kristallographie 222(3–4), 105–113 (2007). doi:10.1524/zkri.2007.222.3-4.105

    Google Scholar 

  63. V. Favre-Nicolin, R. Černý, FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr. 35(6), 734–743 (2002). doi:10.1107/S0021889802015236

    Article  Google Scholar 

  64. Y. Fukai, The Metal-Hydrogen System, 2nd edn., in Springer Series in Materials Science, vol. 21 (Springer, Berlin, 2005), p. 497

    Google Scholar 

  65. Y. Nakamura, K.-I. Oikawa, T. Mamiyama, E. Akiba, Crystal structure of two hydrides formed from a Ti-V-Mn BCC solid solution alloy studied by time-of-flight neutron powder diffraction – a NaCl structure and a CaF2 structure. J. Alloys Compd. 316, 284–289 (2001)

    Article  Google Scholar 

  66. B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32(9), 1121–1140 (2007)

    Article  Google Scholar 

  67. E. Akiba, H. Iba, Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6(6), 461–470 (1998)

    Article  Google Scholar 

  68. T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi, Hydrogen absorption properties of Ti-Cr-A (A = V, Mo or other transition metal) B.C.C. solid solution alloys. J. Alloys Compd. 231, 528–532 (1995)

    Article  Google Scholar 

  69. A.L. Bowman, J.L. Anderson, N.G. Nereson, Neutron-Diffraction Study of LaNi//5D//7. (1973), In proceeding: Rare Earth Research, Carefree, Arizona, 30 April 1973 through 3 May 1973. Publisher: AEC, Tech Inf Cent (CONF-730402-P1),Oak Ridge, Tenn. pp. 485–489

    Google Scholar 

  70. C. Lartigue, A.L. Bail, A. Percheron-Guegan, A new study of the structure of LaNi5D6.7 using a modified Rietveld method for the refinement of neutron powder diffraction data. J. Less-Common Met. 129, 65–76 (1987)

    Article  Google Scholar 

  71. A. Percheron-Guegan, C. Lartigue, J.C. Achard, P. Germi, F. Tasset, Neutron and X-ray diffraction profile analyses and structure of LaNi5, LaNi5-xAlx and LaNi5-xMnx intermetallics and their hydrides (deuterides). J. Less-Common Met. 74, 1–12 (1980)

    Article  Google Scholar 

  72. C. Lartigue, A. Percheron-Guegan, J.C. Achard, J.L. Soubeyroux, Hydrogen (deuterium) ordering in the β-LaNi5Dx > 5 phases: a neutron diffraction study. J. Less-Common Met. 113(1), 127–148 (1985)

    Article  Google Scholar 

  73. S. Ono, K. Nomura, E. Akiba, H. Uruno, Phase transformations of LaNi5-H2 system. J. Less-Common Met. 113, 113–117 (1985)

    Article  Google Scholar 

  74. M.P. Pitt, E.M. Gray, E.H. Kisi, B.A. Hunter, Neutron diffraction study of the LaNi5-D system during activation. J. Alloys Compd. 293–295, 118–123 (1999)

    Article  Google Scholar 

  75. M.P. Pitt, E.M. Gray, B.A. Hunter, Evolution of microstructure in the LaNi5-D system during the early absorption-desorption cycles. J. Alloys Compd. 330–332, 241–245 (2002)

    Article  Google Scholar 

  76. E. Parthe, R. Lemaire, Structure block stacking in intermetallic compounds. 1. Rhombohedral-hexagonal Mn+1X5n-1 and monoclinic-hexagonal-trigonal-orthorhombic Mn+1X5n+2 structure series. Acta Crystallogr. Sect. B: Struct. Sci. 31(JUL15), 1879–1889 (1975). doi:10.1107/s0567740875006413

    Google Scholar 

  77. E. Akiba, H. Hayakawa, T. Kohno, Crystal structure of novel La-Mg-Ni hydrogen absorbing alloys. J. Alloys Compd. 408–412, 280–283 (2006)

    Article  Google Scholar 

  78. K. Kadir, T. Sakai, I. Uehara, Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from Mg2Ni Laves-type layers alternating with AB5 layers. J. Alloys Compd. 257, 115–121 (1997)

    Article  Google Scholar 

  79. R.V. Denys, A.B. Riabov, V.A. Yartys, M. Sato, R.G. Delaplane, Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7-H(D)2 system. J. Solid State Chem. 181(4), 812–821 (2008)

    Article  Google Scholar 

  80. M.N. Guzik, B.C. Hauback, K. Yvon, Hydrogen atom distribution and hydrogen induced site depopulation for the La2−xMgxNi7–H system. J. Solid State Chem. 186(0), 9–16 (2012). doi:http://dx.doi.org/10.1016/j.jssc.2011.11.026

    Google Scholar 

  81. B. Bogdanovic, M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 253–254, 1–9 (1997)

    Article  Google Scholar 

  82. J.W. Lauher, D. Dougherty, P.J. Herley, Sodium tetrahydroaluminate. Acta Crystalogr. B35, 1454–1456 (1979)

    Article  Google Scholar 

  83. N. Sklar, B. Post, The crystal structure of lithium aluminum hydride. Inorg. Chem. 6(4), 669–671 (1967)

    Article  Google Scholar 

  84. B.C. Hauback, H.W. Brinks, H. Fjellvag, Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction. J. Alloys Compd. 346, 184–189 (2002)

    Article  Google Scholar 

  85. H.W. Brinks, B.C. Hauback, P. Norby, H. Fjellvag, The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction. J. Alloys Compd. 351, 222–227 (2003)

    Article  Google Scholar 

  86. B.C. Hauback, H.W. Brinks, C.M. Jensen, K. Murphy, A.J. Maeland, Neutron diffraction structure determination of NaAlD4. J. Alloys Compd. 358, 142–145 (2003)

    Article  Google Scholar 

  87. H.W. Brinks, C.M. Jensen, S.S. Srinivasan, B.C. Hauback, D. Blanchard, K. Murphy, Synchrotron X-ray and neutron diffraction studies of NaAlH4 containing Ti additives. J. Alloys Compd. 376, 215–221 (2004)

    Article  Google Scholar 

  88. V. Ozolins, E.H. Majzoub, T.J. Udovic, Electronic structure and Rietveld refinement parameters of Ti-doped sodium alanates. J. Alloys Compd. 375, 1–10 (2004)

    Article  Google Scholar 

  89. D.B. Ravnsbaek, Y. Filinchuk, R. Černý, M.B. Ley, D. Haase, H.J. Jakobsen, J. Skibsted, T.R. Jensen, Thermal polymorphism and decomposition of Y(BH4)3. Inorg. Chem. 49(8), 3801–3809 (2010). doi:10.1021/ic902279k

    Article  Google Scholar 

  90. C. Frommen, N. Aliouane, S. Deledda, J.E. Fonneløp, H. Grove, K. Lieutenant, I. Llamas-Jansa, S. Sartori, M.H. Sørby, B.C. Hauback, Crystal structure, polymorphism, and thermal properties of yttrium borohydride Y(BH4)3. J. Alloys Compd. 496(1–2), 710–716 (2010)

    Article  Google Scholar 

  91. R. Černý, F. Bonhomme, K. Yvon, P. Fischer, P. Zolliker, D.E. Cox, A. Hewat, Hexamagnesium dicobalt undecadeuteride Mg6Co2D11: containing [CoD4]5- and [CoD5]4- complex anions conforming to the 18-electron rule. J. Alloys Compd. 187(1), 233–241 (1992)

    Article  Google Scholar 

  92. M.C. Moron, Dynamic neutron and synchrotron X-ray powder diffraction methods in the study of chemical processes. J. Mater. Chem. 10(12), 2617–2626 (2000). doi:10.1039/b003604h

    Article  Google Scholar 

  93. O. Isnard, A review of in situ and/or time resolved neutron scattering. C. R. Phys. 8(7–8), 789–805 (2007). doi:http://dx.doi.org/10.1016/j.crhy.2007.10.002

    Google Scholar 

  94. T.C. Hansen, H. Kohlmann, Chemical reactions followed by in situ neutron powder diffraction. Zeitschrift für anorganische und allgemeine Chemie 640(15), 3044–3063 (2014). doi:10.1002/zaac.201400359

    Article  Google Scholar 

  95. V.A. Yartys, R.V. Denys, J.P. Maehlen, C.J. Webb, E.M.A. Gray, T. Blach, A.A. Poletaev, J.K. Solberg, O. Isnard, Nanostructured metal hydrides for hydrogen storage studied by in situ synchrotron and neutron diffraction, in Materials Research Society Symposium Proceedings, San Francisco, CA; United States, 5 April 2010 through 9 April (2010), pp. 69–79

    Google Scholar 

  96. I.F. Bailey, R. Done, J.W. Dreyer, E.M. Gray, A high-temperature high-pressure gas-handling cell for neutron scattering experiments. High Pressure Res. 24(2), 309–315 (2004). doi:10.1080/08957950410001722028

    Article  Google Scholar 

  97. M.P. Pitt, R.I. Smith, E.M. Gray, Time-of-flight neutron powder diffraction with a thick-walled sample cell. J. Appl. Crystallogr. 40(3), 399–408 (2007). doi:10.1107/s0021889807006668

    Article  Google Scholar 

  98. E.M. Gray, C.J. Webb, In-situ diffraction techniques for studying hydrogen storage materials under high hydrogen pressure. Int. J. Hydrogen Energy 37(13), 10182–10195 (2012). doi:10.1016/j.ijhydene.2012.03.051

    Article  Google Scholar 

  99. S.S. Sidhu, L. Heaton, D.D. Zauberis, F.P. Campos, Neutron diffraction study of titanium-zirconium system. J. Appl. Phys. 27(9), 1040–1042 (1956). doi:10.1063/1.1722538

    Article  Google Scholar 

  100. R. Denys, V. Yartys, E. Gray, C. Webb, LaNi5-assisted hydrogenation of MgNi2 in the hybrid structures of La1.09Mg1.91Ni9D9.5 and La0.91Mg2.09Ni9D9.4. Energies 8(4), 3198–3211 (2015)

    Google Scholar 

  101. Ö. Bergstöm, A.M. Andersson, K. Edström, T. Gustafsson, A neutron diffraction cell for studying lithium-insertion processes in electrode materials. J. Appl. Crystallogr. 31(5), 823–825 (1998)

    Article  Google Scholar 

  102. M. Latroche, Y. Chabre, B. Decamps, A. Percheron-Guégan, D. Noreus, In situ neutron diffraction study of the kinetics of metallic hydride electrodes. J. Alloys Compd. 334(1–2), 267–276 (2002). doi:10.1016/s0925-8388(01)01799-6

    Article  Google Scholar 

  103. M. Bianchini, J.B. Leriche, J.L. Laborier, L. Gendrin, E. Suard, L. Croguennec, C. Masquelier, A new null matrix electrochemical cell for Rietveld refinements of in-situ or operando neutron powder diffraction data. J. Electrochem. Soc. 160(11), A2176–A2183 (2013). doi:10.1149/2.076311jes

    Article  Google Scholar 

  104. J.J. Biendicho, M. Roberts, C. Offer, D. Noréus, E. Widenkvist, R.I. Smith, G. Svensson, K. Edström, S.T. Norberg, S.G. Eriksson, S. Hull, New in-situ neutron diffraction cell for electrode materials. J. Power Sources 248(0), 900–904 (2014). doi:http://dx.doi.org/10.1016/j.jpowsour.2013.09.141

    Google Scholar 

  105. S. Miraglia, D. Fruchart, N. Skryabina, M. Shelyapina, B. Ouladiaf, E.K. Hlil, P. Rango, J. Charbonnier, Hydrogen-induced structural transformation in TiV0.8Cr1.2 studied by in situ neutron diffraction. J. Alloys Compd. 442, 49–54 (2007)

    Article  Google Scholar 

  106. Y. Fei, X. Kong, Z. Wu, H. Li, V.K. Peterson, In situ neutron-diffraction study of the Ti38V30Cr14Mn18 structure during hydrogenation. J. Power Sources 241(0), 355–358 (2013). doi:http://dx.doi.org/10.1016/j.jpowsour.2013.04.118

    Google Scholar 

  107. J. Charbonnier, P.D. Rango, D. Fruchart, S. Miraglia, N. Skryabina, J. Huot, B. Hauback, M. Pitt, S. Rivoirard, Structural analysis of activated Mg(Nb)H2. J. Alloys Compd. 404–406, 541–544 (2005)

    Article  Google Scholar 

  108. M. Ponthieu, F. Cuevas, J.F. Fernández, L. Laversenne, F. Porcher, M. Latroche, Structural properties and reversible deuterium loading of MgD 2-TiD2 nanocomposites. J. Phys. Chem. C 117(37), 18851–18862 (2013). doi:10.1021/jp405803x

    Article  Google Scholar 

  109. D. Fruchart, M. Commandré, D. Sauvage, A. Rouault, R. Tellgren, Structural and activation process studies of Fe-Ti like hydride compounds. J. Less-Common Met. 74, 55–63 (1980)

    Article  Google Scholar 

  110. T. Graham, On the absorption and dialytic separation of gases by colloid septa. Phil. Trans. R. Soc. (London) 156, 399–439 (1866)

    Article  Google Scholar 

  111. J.E. Worsham Jr., M.K. Wilkinson, C.G. Shull, Neutron-diffraction observations on the palladium-hydrogen and palladium-deuterium systems. J. Phys. Chem. Solid 3(3–4), 303–310 (1957)

    Article  Google Scholar 

  112. M.P. Pitt, E.M. Gray, Tetrahedral occupancy in the Pd-D system observed by in situ neutron powder diffraction. Europhys. Lett. 64(3), 344–350 (2003). doi:10.1209/epl/i2003-00187-x

    Article  Google Scholar 

  113. C. Elsässer, K.M. Ho, C.T. Chan, M. Fähnle, Vibrational states for hydrogen in palladium. Phys. Rev. B 44(18), 10377–10380 (1991). doi:10.1103/PhysRevB.44.10377

    Article  Google Scholar 

  114. K.G. McLennan, E.M. Gray, J.F. Dobson, Deuterium occupation of tetrahedral sites in palladium. Phys. Rev. B: Condens. Matter Mater. Phys. 78(1), 014104 (2008). doi:10.1103/PhysRevB.78.014104

    Article  Google Scholar 

  115. G. Lelièvre, D. Fruchart, P. Convert, F. Lefèvre-Joud, Characterisation by neutron diffraction in high temperature pressurised water of the surface corrosion and hydrogen embrittlement of Zircaloy-4. J. Alloys Compd. 347(1–2), 288–294 (2002). doi:10.1016/S0925-8388(02)00775-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Daniel Fruchart (Institut Néel, CNRS), Dr. Pamela Whitfield (Spallation Neutron Source), and Prof. Evan Gray (Griffith University) for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Huot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huot, J., Černý, R. (2016). Neutron Powder Diffraction. In: Fritzsche, H., Huot, J., Fruchart, D. (eds) Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials. Neutron Scattering Applications and Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-22792-4_3

Download citation

Publish with us

Policies and ethics