Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 913))

Abstract

The Higgs is a scalar boson and all the other known particles of this sort are bound states of a strongly interacting sector (namely QCD) whose confinement scale is not far from the particle’s mass. It is thus legitimate to ask if the same could be true for the Higgs. Clearly QCD cannot be responsible for the formation of the Higgs particle and a new strongly interacting sector, i.e. the existence of a new strong force, needs to be postulated if we want to explore this possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Exhaustive textbooks on the subject are [13].

  2. 2.

    The result is obtained by estimating the energy scale where the four-graviton vertex, \(g_{G}^{2}\), reaches the perturbativity bound of 16π 2.

  3. 3.

    Other light degrees of freedom might well be present in the low-energy theory, provided they are coupled weakly enough to have escaped detection. Their presence would not affect the considerations that follow.

  4. 4.

    This doesn’t make it completely untestable. Purely Majorana neutrino masses would be a strong indication of its validity while observing a large Dirac component would make it less appealing.

  5. 5.

    See [13, 14] for recents essays on the Naturalness problem. The problem was first formulated in [1517], however according to the latter references it was K.Wilson who first raised the issue.

  6. 6.

    There is also the cosmological constant term, of d = 0. It poses another Naturalness problem that we will mention later in this chapter.

  7. 7.

    Actually G F is taken as an input parameter in actual calculations because it is better measured than g W and m W , but this doesn’t affect the conceptual point we are making.

  8. 8.

    Standard textbooks and reviews on supersymmetry are in [2025].

  9. 9.

    A theory with nearly massless u, d and s quarks, and all the others with masses at the EW scale \(\sim m_{Z}\), at which \(g_{S} \sim 4\pi /10\) well within the perturbative regime, is what we actually have in mind for our analogy.

  10. 10.

    Those particles might be “partially composite”, a concept that we will introduce and discuss extensively in these Notes.

References

  1. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, Cambridge, 1995)

    Google Scholar 

  2. S. Weinberg, The Quantum Theory of Fields, vol. 1. Foundations (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  3. S. Weinberg, The Quantum Theory of Fields, vol. 2. Modern Applications (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  4. T. Cheng, L. Li, Gauge Theory of Elementary Particle Physics (Oxford University Press, Oxford, 1984)

    Google Scholar 

  5. L.B. Okun, Leptons and Quarks (North Holland, New York, 1982)

    Google Scholar 

  6. M.D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  7. Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C38, 090001 (2014)

  8. R. Barbieri, Ten lectures on Electroweak Interactions. Scuola Normale Superiore (2007). arXiv:hep-ph/0706.0684

    Google Scholar 

  9. S. Weinberg, Baryon and Lepton nonconserving processes. Phys. Rev. Lett. 43, 1566–1570 (1979)

    Article  ADS  Google Scholar 

  10. P. Langacker, Grand unified theories and proton decay. Phys. Rept. 72, 185 (1981)

    Article  ADS  Google Scholar 

  11. S. Raby, Grand Unified Theories (2006). arXiv:hep-ph/0608183 [hep-ph]

  12. M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter. Nucl. Phys. B753, 178–194 (2006). arXiv:hep-ph/0512090 [hep-ph]

    Google Scholar 

  13. R. Barbieri, Electroweak theory after the first Large Hadron Collider phase. Phys. Scripta T158, 014006 (2013). arXiv:1309.3473 [hep-ph]

    Google Scholar 

  14. G.F. Giudice, Naturally Speaking: The Naturalness Criterion and Physics at the LHC (2008). arXiv:0801.2562 [hep-ph]

  15. S. Dimopoulos, L. Susskind, Mass without scalars. Nucl. Phys. B155, 237–252 (1979)

    Article  ADS  Google Scholar 

  16. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D20, 2619–2625 (1979)

    ADS  Google Scholar 

  17. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, in Proceedings of the 1979 Cargese Institute on Recent Developments in Gauge Theories (Plenum Press, New York, 1980), p. 135

    Google Scholar 

  18. G. D’Ambrosio, G. Giudice, G. Isidori, A. Strumia, Minimal flavor violation: an effective field theory approach. Nucl. Phys. B645, 155–187 (2002) arXiv:hep-ph/0207036 [hep-ph]

    Google Scholar 

  19. S.L. Glashow, S. Weinberg, Natural conservation laws for neutral currents. Phys. Rev. D15, 1958 (1977)

    ADS  Google Scholar 

  20. M. Drees, An Introduction to supersymmetry (1996). arXiv:hep-ph/9611409 [hep-ph]

  21. S.P. Martin, A supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 21, 1–153 (2010). arXiv:hep-ph/9709356 [hep-ph]

  22. M.E. Peskin, Supersymmetry in elementary particle physics (2008). arXiv:0801.1928 [hep-ph]

  23. M. Sohnius, Introducing supersymmetry. Phys. Rept. 128, 39–204 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Weinberg, The Quantum Theory of Fields, vol. 3. Supersymmetry (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  25. J. Wess, J. Bagger, Supersymmetry and Supergravity. Princeton Series in Physics (Princeton University Press, Princeton, 1992)

    Google Scholar 

  26. S. Weinberg, Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607 (1987)

    Article  ADS  Google Scholar 

  27. L.J. Hall, Y. Nomura, Evidence for the multiverse in the standard model and beyond. Phys. Rev. D78, 035001 (2008). arXiv:0712.2454 [hep-ph]

  28. S. Weinberg, Implications of dynamical symmetry breaking. Phys. Rev. D13, 974–996 (1976)

    ADS  Google Scholar 

  29. S. Weinberg, Implications of dynamical symmetry breaking: an addendum. Phys. Rev. D19, 1277–1280 (1979)

    ADS  Google Scholar 

  30. K. Lane, Two lectures on technicolor (2002). arXiv:hep-ph/0202255 [hep-ph]

  31. H. Terazawa, K. Akama, Y. Chikashige, Unified model of the Nambu-Jona-Lasinio type for all elementary particle forces. Phys. Rev. D15, 480 (1977)

    ADS  Google Scholar 

  32. M.J. Dugan, H. Georgi, D.B. Kaplan, Anatomy of a composite Higgs model. Nucl. Phys. B254, 299 (1985)

    Article  ADS  Google Scholar 

  33. D.B. Kaplan, H. Georgi, SU(2) x U(1) breaking by vacuum misalignment. Phys. Lett. B136, 183 (1984)

    Article  ADS  Google Scholar 

  34. D.B. Kaplan, H. Georgi, S. Dimopoulos, Composite Higgs scalars. Phys. Lett. B136, 187 (1984)

    Article  ADS  Google Scholar 

  35. J. Barnard, T. Gherghetta, T.S. Ray, UV descriptions of composite Higgs models without elementary scalars. JHEP 1402, 002 (2014). arXiv:1311.6562 [hep-ph]

  36. F. Caracciolo, A. Parolini, M. Serone, UV completions of composite Higgs models with partial compositeness. JHEP 1302, 066 (2013). arXiv:1211.7290 [hep-ph]

  37. G. Ferretti, UV completions of partial compositeness: the case for a SU(4) gauge group. JHEP 1406, 142 (2014). arXiv:1404.7137 [hep-ph]

  38. G. Ferretti, D. Karateev, Fermionic UV completions of composite Higgs models. JHEP 1403, 077 (2014). arXiv:1312.5330 [hep-ph]

  39. D. Marzocca, A. Parolini, M. Serone, Supersymmetry with a pNGB Higgs and partial compositeness. JHEP 1403, 099 (2014). arXiv:1312.5664 [hep-ph]

  40. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses. Nucl. Phys. B365, 259–278 (1991)

    Article  ADS  Google Scholar 

  41. K. Agashe, R. Contino, A. Pomarol, The minimal composite Higgs model. Nucl. Phys. B719, 165–187 (2005). arXiv:hep-ph/0412089 [hep-ph]

    Google Scholar 

  42. R. Contino, Y. Nomura, A. Pomarol, Higgs as a holographic pseudoGoldstone boson. Nucl. Phys. B671, 148–174 (2003). arXiv:hep-ph/0306259 [hep-ph]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panico, G., Wulzer, A. (2016). Introduction. In: The Composite Nambu-Goldstone Higgs. Lecture Notes in Physics, vol 913. Springer, Cham. https://doi.org/10.1007/978-3-319-22617-0_1

Download citation

Publish with us

Policies and ethics