Skip to main content

Abstract

Durable disease resistance is an important aim in each breeding program. Genetically, two basic patterns of resistance are available: qualitative (race-specific, vertical) and quantitative (race-non-specific, horizontal) resistances. Classical breeding methods are recurrent backcrossing (BC) for introducing single (major) genes, recurrent selection for improving the level of quantitative resistances and multi-stage selection for combining resistances and agronomic traits during cultivar development. Molecular markers allow efficient introduction of qualitative resistances into elite material and to analyze quantitative resistances. During marker-assisted backcrossing (MABC), a major gene can be precisely targeted, the genome of the recurrent parent can be recovered fast, and linkage drag can be reduced. By marker-assisted selection (MAS), major genes or quantitative trait loci (QTL) can be pyramided. Genomic selection (GS) will allow selecting for multiple traits directly in the genome by chip-based, high-throughput genotyping platforms. To achieve a higher durability, populations of biotrophic pathogens (e.g. powdery mildews, rusts) should be regularly monitored for their virulence frequencies and virulence combinations. Strategies for enhancing durability of qualitative resistances aim to increase host diversity or host complexity. Quantitative resistances generally have a higher durability but might be prone to gradual loss (erosion) in the long term. Limits of resistance selection are given by several biological and economic constraints. Broad-spectrum resistance genes and GS might open new avenues to a rational, knowledge-based selection. Resistance breeding will remain a top priority given the challenges of a growing world population in a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Alonso-Blanco C, Koornneef M, van Ooijen JW (2006) QTL analysis. Methods Mol Biol 323:79–99

    CAS  PubMed  Google Scholar 

  • Anonymous (2014) Descriptive list of recommended cultivars. Landbuch-Verlag, Hannover. (In German: Beschreibende Sortenliste. Getreide, Mais, Öl-und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte). http://www.bundessortenamt.de/internet30/index.php?id=164. Accessed 12 Sept 2014

  • Arseniuk E, Góral T, Czembor HJ (1993) Reaction of triticale, wheat and rye accessions to graminaceous Fusarium sp infection at the seedling and adult plant growth stages. Euphytica 70:175–183

    Article  Google Scholar 

  • Bayles RA, Flath K, Hovmøller MS et al (2000) Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomy 20:805–811

    Article  Google Scholar 

  • Becher R, Miedaner T, Wirsel SGR (2013) Biology, diversity, and management of FHB-causing Fusarium species in small-grain cereals. In: Kempken F (ed) The Mycota XI – agricultural applications, 2nd edn. Springer, Berlin/Heidelberg, pp 199–241

    Chapter  Google Scholar 

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575

    Article  PubMed  Google Scholar 

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75–85

    Article  CAS  Google Scholar 

  • Browning JA, Frey KJ (1969) Multiline cultivars as a means of disease control. Annu Rev Phytopathol 7:355–382

    Article  Google Scholar 

  • Buerstmayr M, Matiasch L, Mascher F et al (2014) Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. Theor Appl Genet 127:2011–2028

    Article  PubMed  PubMed Central  Google Scholar 

  • Bueschges R, Hollricher K, Panstruga R et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  Google Scholar 

  • Chen X (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agr Res 58:648–655

    Article  Google Scholar 

  • Chen XM, Line RF (1995) Gene action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology 85:567–572

    Article  Google Scholar 

  • Chen H, Wang S, Xing Y et al (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci U S A 100:2544–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WQ, Wu LR, Liu TG et al (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101

    Article  Google Scholar 

  • Chen W, Mingus J, Mammadov J et al (2010) KASPar: a simple and cost-effective system for SNP genotyping. In: Final program, abstract and exhibit guide of the XVIII international conference on the status of plant and animal genome research, San Diego, CA, 9–13 January 2010

    Google Scholar 

  • Colon IT, Eijlander R, Budding DJ et al (1993) Resistance to potato late blight (Phytophthora infestans (Mont.) de Bary) in Solanum nigrum, S. villosum and their sexual hybrids with S. tuberosum and S. demissum. Euphytica 66:55–64

    Article  Google Scholar 

  • Cunningham EP (1975) Multi-stage index selection. Theor Appl Genet 46:55–61

    Article  CAS  PubMed  Google Scholar 

  • den Boer E, Pelgrom KTB, Zhang NW et al (2014) Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up. Theor Appl Genet 127:1805–1816

    Article  Google Scholar 

  • Dubcovsky J (2014) MAS wheat. Laboratory protocols for marker assisted selection. Available via USDA National Institute of Food and Agriculture. http://maswheat.ucdavis.edu/protocols/index.htm. Accessed 12 Sept 2014

  • Dunwell JM (2014) Transgenic cereals: current status and future prospects. J Cereal Sci 59:419–434

    Article  CAS  Google Scholar 

  • Ferreira SA, Pitz KY, Manshardt R et al (2002) Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Dis 86:101–105

    Article  Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Frauenstein K (1984) Resistance breeding (In German: Resistenzzüchtung). Lehrbriefe für das Hochschulstudium. 11. Lehrbrief, 2. Auflage. Zwickau, DDR

    Google Scholar 

  • Frisch M, Melchinger AE (2001a) Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci 41:1716–1725

    Article  Google Scholar 

  • Frisch M, Melchinger AE (2001b) Marker-assisted backcrossing for introgression of a recessive gene. Crop Sci 41:1485–1494

    Article  Google Scholar 

  • Frisch M, Melchinger AE (2001c) The length of the intact donor chromosome segment around a target gene in marker-assisted backcrossing. Genetics 157:1343–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Fu D, Uauy C, Distelfeld A et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahan LJ, Ma YT, Coble MLM et al (2005) Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 98:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Gale LR, Ward TJ, Balmas V et al (2007) Population subdivision of Fusarium graminearum sensu stricto in the upper midwestern United States. Phytopathology 97:1434–1439

    Article  CAS  PubMed  Google Scholar 

  • GRRC (2014) Global Rust Reference Center. Yellow rust. Pathotype by country. http://wheatrust.org/yellow-rust/pathotype-by-country. Accessed 12 Sept 2014

  • Habekuß A, Kühne T, Krämer I et al (2008) Identification of Barley mild mosaic virus isolates in Germany breaking rym5 resistance. J Phytopathol 156:36–41

    Google Scholar 

  • Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Cereals (handbook of plant breeding), 1st edn. Springer, Heidelberg, pp 3–98

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Herzog E, Frisch M (2011) Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet 123:251–260

    Article  PubMed  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hovmøller MS (2007) Sources of seedling and adult plant resistance to Puccinia striiformis f. sp. tritici in European wheats. Plant Breed 126:225–233

    Article  CAS  Google Scholar 

  • Huesing J, English L (2004) The impact of Bt crops on the developing world. AgBioForum 7:84–95

    Google Scholar 

  • ISAAA (2014) International Service for the Acquisition of Agri-Biotech Applications. http://www.isaaa.org/. Accessed 21 Oct 2014

  • Jaccoud D, Peng K, Feinstein D et al (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahoor A, Fischbeck G (1987) Sources of resistance to powdery mildew in barley lines derived from Hordeum spontaneum collected in Israel. Plant Breed 99:274–281

    Article  Google Scholar 

  • Jiang G, Wu Z, Huang D (1994) Effects of recurrent selection for resistance to scab (Gibberella zeae) in wheat. Euphytica 72:107–113

    Article  Google Scholar 

  • Johnson R (1981) Durable resistance, definition of, genetic control, and attainment in plant breeding. Phytopathology 71:567–568

    Article  Google Scholar 

  • Johnson R (1992) Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63:3–22

    Article  Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding – a broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5:51–60

    CAS  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, London

    Book  Google Scholar 

  • Keller B, Feuillet C, Messmer M (2000) Genetics of disease resistance. In: Slusarenko AJ, Fraser RS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 101–160

    Chapter  Google Scholar 

  • Klocke B, Flath K, Miedaner T (2013) Virulence phenotypes in powdery mildew (Blumeria graminis) populations and resistance genes in triticale (x Triticosecale). Eur J Plant Pathol 137:463–476

    Article  Google Scholar 

  • Koebner R (2003) MAS in cereals: green for maize, amber for rice, still red for wheat and barley. In: Proceedings of FAO workshop Marker assisted selection: a fast track to increase genetic gain in plant and animal breeding? http://www.fao.org/biotech/docs/koebner.pdf. Accessed 12 Sept 2014

  • Kolmer J (2013) Leaf rust of wheat: pathogen biology, variation and host resistance. Forests 4:70–84

    Article  Google Scholar 

  • Kolmer JA, Leonard KJ (1986) Genetic selection and adaptation to Cochliobolus heterostrophus to corn hosts with partial resistance. Phytopathology 76:774–777

    Article  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Kover PX, Caicedo AL (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites: invited review. Mol Ecol 10:1–16

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S et al (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Lehman JS, Shaner G (1996) Genetic variation in latent period among isolates of Puccinia recondita f. sp. tritici on partially resistant wheat cultivars. Phytopathology 86:633–641

    Article  Google Scholar 

  • Lillemo M, Asalf B, Singh RP et al (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Löffler M, Schön CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  CAS  Google Scholar 

  • Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Article  Google Scholar 

  • Lowe I, Cantu D, Dubcovsky J (2011) Durable resistance to the wheat rusts: integrating systems biology and traditional phenotype-based research methods to guide the deployment of resistance genes. Euphytica 179:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA (1988) The role of specific genes in breeding for durable stem rust resistance in wheat and triticale. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, pp 1–9

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSRIO, East Melbourne

    Book  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J et al (2012) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Accessed 12 Sept 2014

  • McNeal FH, Konzak CF, Smith EP et al (1971) A uniform system for recording and processing cereal research data. US Dep Agric, Agric Res Serv ARS 34–121:42

    Google Scholar 

  • Mesterházy A, Bartos P, Goyeau H et al (2000) European virulence survey for leaf rust in wheat. Agronomy 20:793–804

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miedaner T (1997) Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed 116:201–220

    Article  Google Scholar 

  • Miedaner T, Flath K (2007) Effectiveness and environmental stability of quantitative powdery mildew (Blumeria graminis) resistance among winter wheat cultivars. Plant Breed 126:553–558

    Article  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Miedaner T, Wilde F, Steiner B et al (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Wilde F, Korzun V et al (2008a) Phenotypic selection for high resistance to Fusarium head blight after introgression of quantitative trait loci (QTL) from exotic spring wheat and verification by simple sequence repeat markers a posteriori. Plant Breed 127:217–221

    Article  Google Scholar 

  • Miedaner T, Cumagun CJR, Chakraborty S (2008b) Population genetics of three important head blight pathogens Fusarium graminearum. F. pseudograminearum and F. culmorum. J Phytopathol 156:129–139

    Article  Google Scholar 

  • Miedaner T, Klocke B, Flath K et al (2012a) Diversity, spatial variation, and temporal dynamics of virulences in the German leaf rust (Puccinia recondita f. sp. secalis) population in winter rye. Eur J Plant Pathol 132:23–35

    Article  Google Scholar 

  • Miedaner T, Risser P, Paillard S et al (2012b) Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol Breed 29:731–742

    Article  CAS  Google Scholar 

  • Miedaner T, Zhao Y, Gowda M et al (2013) Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genomics 14:858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munkvold GP, Hellmich RL, Showers WB (1997) Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology 87:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Niewoehner AS, Leath S (1998) Virulence of Blumeria graminis f. sp. tritici on winter wheat in the eastern United States. Plant Dis 82:64–68

    Article  Google Scholar 

  • Niks RE, Parlevliet JE, Lindhout P et al (2011) Breeding crops with resistance to diseases and pests. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • Nowara D, Gay A, Lacomme C et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohm HW, Shaner GE (1976) Components of slow leaf-rusting at different growth stages in wheat. Phytopathology 66:1356–1360

    Article  Google Scholar 

  • Openshaw SJ, Jarboe SG, Beavis WD (1994) Marker-assisted selection in backcross breeding. In: Lower R (ed) ASHS/CSSA Joint plant breeding symposium on analysis of molecular data. Oregon State University, Corvallis

    Google Scholar 

  • Ordon F, Friedt W, Scheurer K et al (2004) Molecular markers in breeding for virus resistance in barley. J Appl Genet 45:145–159

    PubMed  Google Scholar 

  • Ordon F, Habekuss A, Kastirr U et al (2009) Virus resistance in cereals: sources of resistance, genetics and breeding. J Phytopathol 157:535–545

    Article  Google Scholar 

  • Parlevliet JE (1985) Resistance of nonrace-specific type. In: Roelfs AP, Bushnell WR (eds) The cereal rust II. Academic, New York, pp 501–525

    Google Scholar 

  • Parlevliet JE (1989) Chapter 8: identification and evaluation of quantitative resistance. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology, vol 2, Genetics, Resistance, and Management. McGraw-Hill, New York, pp 215–248

    Google Scholar 

  • Parlevliet JE (1995) Genetic and breeding aspects of durable resistance of crops to pathogens. Afr Crop Sci J 3:1–13. http://www.ajol.info/index.php/acsj/article/viewFile/54555/43069. Accessed 19 Sept 2014

    Google Scholar 

  • Parlevliet JE, van Ommeren A (1988) Recurrent selection for grain yield in early generations of two barley populations. Euphytica 38:175–184

    Article  Google Scholar 

  • Peng T, Sun X, Mumm RH (2014) Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation. Mol Breed 33:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepho H-P (2000) Optimal marker density for interval mapping in a backcross population. Heredity 84:437–440

    Article  PubMed  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser R et al (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S, Singh RP, Torres E (1988) Current CIMMYT approaches in breeding wheat for rust resistance. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rust of wheat. CIMMYT, Mexico, pp 101–118

    Google Scholar 

  • Ren RS, Wang MN, Chen XM et al (2012) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857

    Article  CAS  PubMed  Google Scholar 

  • Risk JM, Selter LL, Chauhan H et al (2013) The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol J 11:847–854

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP et al (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Article  Google Scholar 

  • Rutkoski JE, Benson J, Jia Y et al (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61

    Article  CAS  Google Scholar 

  • Rutkoski JE, Poland JA, Singh RP (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 7, No. 3. doi:10.3835/plantgenome2014.02.0006

    Google Scholar 

  • Salamati S, Zhan J, Burdon JJ et al (2000) The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology 90:901–908

    Article  CAS  PubMed  Google Scholar 

  • Schmale DG III, Leslie JF, Zeller KA et al (2006) Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology 96:1021–1026

    Article  CAS  Google Scholar 

  • Schnell FW (1982) A synoptic study of the methods and categories of plant breeding. Z Pflanzen 89:1–18

    Google Scholar 

  • Shelton A, Zhao J, Roush R (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S et al (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Sørensen CK, Hovmøller MS, Leconte M et al (2014) New races of Puccinia striiformis found in Europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology 104:1042–1051

    Article  PubMed  Google Scholar 

  • Souza TLPO, Ragagnin VA, Dessaune SN et al (2014) DNA marker-assisted selection to pyramid rust resistance genes in “carioca” seeded common bean lines. Euphytica 199:303–316. doi:10.1007/s10681-014-1126-0

    Google Scholar 

  • St. Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  CAS  PubMed  Google Scholar 

  • Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238

    Article  Google Scholar 

  • Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Perovic D, Kumlehn J et al (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    Article  CAS  PubMed  Google Scholar 

  • Stuthman DD, Leonard KJ, Miller-Garvin J (2007) Breeding crops for durable resistance to disease. Adv Agron 95:319–367

    Article  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Talas F, McDonald BA (2014) Significant variation in sensitivity to DMI fungicide in field populations of Fusarium graminearum. Plant Pathol 64:664–670. doi:10.1111/ppa.12280

    Google Scholar 

  • Talas F, Parzies HK, Miedaner T (2011) Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. Eur J Plant Pathol 131:39–48

    Article  Google Scholar 

  • Tanksley SD, Young ND, Patterson AH et al (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–263

    Article  CAS  Google Scholar 

  • Uauy C, Brevis JC, Chen X et al (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  CAS  PubMed  Google Scholar 

  • van der Linde K, Hemetsberger C, Kastner C et al (2012) A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24:1285–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Plank JE (1963) Plant diseases: epidemics and control. Academic, New York

    Google Scholar 

  • van der Plank JE (1968) Disease resistance in plants. Academic, New York

    Google Scholar 

  • Voss HH, Holzapfel J, Hartl L et al (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed 127:333–339

    Article  Google Scholar 

  • Voss HH, Bowden RL, Leslie JF et al (2010) Variation and transgression of aggressiveness among two Gibberella zeae crosses developed from highly aggressive parental isolates. Phytopathology 100:904–912

    Article  PubMed  Google Scholar 

  • Welz HG, Dölz A, Geiger HH (1993) Assessment of the durability of partial resistance in the rye/powdery mildew pathosystem. In: Jacobs T, Parleviet JE (eds) Durability of disease resistance. Kluwer Academic Publishers, Dordrecht, pp 343–344

    Google Scholar 

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55

    Article  CAS  Google Scholar 

  • Wilde F, Korzun V, Ebmeyer E et al (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370

    Article  CAS  Google Scholar 

  • Wilde F, Schön CC, Korzun V et al (2008) Marker-based introduction of three quantitative-trait loci conferring resistance to Fusarium head blight into an independent elite winter wheat breeding population. Theor Appl Genet 117:29–35

    Article  CAS  PubMed  Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH et al (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe MS (1985) The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu Rev Phytopathol 23:251–273

    Article  Google Scholar 

  • Wolfe MS, Finckh MR (1997) Diversity of host resistance within the crop: effects on host, pathogen and disease. In: Hartleb H, Heitefuss R, Hoppe HH (eds) Plant resistance to fungal diseases. Fischer, Jena, pp 378–400

    Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yang E-N, Rosewarne GM, Herrera-Foessel SA et al (2013) QTL analysis of the spring wheat “Chapio” identifies stable stripe rust resistance despite inter-continental genotype × environment interactions. Theor Appl Genet 126:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  CAS  PubMed  Google Scholar 

  • Zeller KA, Bowden RL, Leslie JF (2004) Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Mol Ecol 13:563–571

    Article  PubMed  Google Scholar 

  • Zeller SL, Kalinina O, Flynn DFB et al (2012) Mixtures of genetically modified wheat lines outperform monocultures. Ecol Appl 22:1817–1826

    Article  PubMed  Google Scholar 

  • Zeven AC, Knott DR, Johnson R (1983) Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust, leaf rust and yellow rust. Euphytica 32:319–327

    Article  Google Scholar 

  • Zhan J, Pettway RE, McDonald BA (2003) The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol 38:286–297

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES et al (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miedaner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miedaner, T. (2016). Breeding Strategies for Improving Plant Resistance to Diseases. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_15

Download citation

Publish with us

Policies and ethics