Skip to main content

Abstract

Objective: Uterine sarcomas are rare tumors that account for 3–7 % of uterine cancers. Currently, the definition and diagnosis of uterine sarcomas are largely based on the newly revised classification by the World Health Organization (WHO, 2014). The pathogenesis of uterine sarcoma remains largely unknown. This review summarizes the available clinical, pathological, and especially molecular findings for uterine sarcomas.

Methods: Medline was searched for publications in English between 1980 and 2014. The publications which represent either a larger number of case series or typical morphologic and molecular studies for uterine sarcomas were reviewed and cited in this chapter.

Conclusions: Each uterine sarcoma type has its own characteristic clinicopathological, prognostic, and specific molecular genetic alterations. Updated information and new insights into the molecular biology for tumorigenesis of uterine sarcoma are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALM:

Atypical leiomyoma

CGH:

Comparative genomic hybridization

EMA:

Epithelial membrane antigen

EMT:

Epithelial to mesenchymal transition

ESN:

Endometrial stromal nodule

ESS:

Endometrial stromal sarcoma

FIGO:

International Federation of Gynecology and Obstetrics

FISH:

Fluorescence in situ hybridization

HDCA8:

Histone deacetylase 8

HGESS:

High-grade endometrial stromal sarcoma

LGESS:

Low-grade endometrial stromal sarcoma

LMS:

Leiomyosarcoma

MMMT:

Malignant mixed Mullerian tumor

SMA:

Smooth muscle actin

STUMP:

Smooth muscle tumors of uncertain malignant potential

UAS:

Uterine adenosarcoma

UCS:

Uterine carcinosarcoma

ULM:

Uterine leiomyoma

USMT:

Uterine smooth muscle tumors

UUS:

Uterine Undifferentiated Sarcoma

WHO:

World Health Organization

References

  1. Major FJ, Blessing JA, Silverberg SG, Morrow CP, Creasman WT, Currie JL, et al. Prognostic factors in early-stage uterine sarcoma. A Gynecologic Oncology Group study. Cancer. 1993;71(4 Suppl):1702–9.

    Article  CAS  PubMed  Google Scholar 

  2. Toro JR, Travis LB, Wu HJ, Zhu K, Fletcher CD, Devesa SS. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: an analysis of 26,758 cases. Int J Cancer. 2006;119(12):2922–30.

    Article  CAS  PubMed  Google Scholar 

  3. Kurman R, Carcangiu M, Herrington C, Young R. WHO classification of tumours of female reproductive organs. Geneva: World Health Organization; 2014.

    Google Scholar 

  4. Prat J. FIGO staging for uterine sarcomas. Int J Gynaecol Obstet. 2009;104(3):177–8.

    Article  PubMed  Google Scholar 

  5. Shah SH, Jagannathan JP, Krajewski K, O’Regan KN, George S, Ramaiya NH. Uterine sarcomas: then and now. AJR Am J Roentgenol. 2012;199(1):213–23.

    Article  PubMed  Google Scholar 

  6. Amant F, Cadron I, Fuso L, Berteloot P, de Jonge E, Jacomen G, et al. Endometrial carcinosarcomas have a different prognosis and pattern of spread compared to high-risk epithelial endometrial cancer. Gynecol Oncol. 2005;98(2):274–80.

    Article  PubMed  Google Scholar 

  7. Bansal N, Herzog TJ, Seshan VE, Schiff PB, Burke WM, Cohen CJ, et al. Uterine carcinosarcomas and grade 3 endometrioid cancers: evidence for distinct tumor behavior. Obstet Gynecol. 2008;112(1):64–70.

    Article  PubMed  Google Scholar 

  8. Ferguson SE, Tornos C, Hummer A, Barakat RR, Soslow RA. Prognostic features of surgical stage I uterine carcinosarcoma. Am J Surg Pathol. 2007;31(11):1653–61.

    Article  PubMed  Google Scholar 

  9. Isik T, Ayhan E, Uyarel H, Ergelen M, Tanboga IH, Kurt M, et al. Increased mean platelet volume associated with extent of slow coronary flow. Cardiol J. 2012;19(4):355–62.

    Google Scholar 

  10. Mayall F, Rutty K, Campbell F, Goddard H. p53 immunostaining suggests that uterine carcinosarcomas are monoclonal. Histopathology. 1994;24(3):211–4.

    Article  CAS  PubMed  Google Scholar 

  11. Blom R, Guerrieri C, Stal O, Malmstrom H, Sullivan S, Simonsen E. Malignant mixed Mullerian tumors of the uterus: a clinicopathologic, DNA flow cytometric, p53, and mdm-2 analysis of 44 cases. Gynecol Oncol. 1998;68(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  12. Kanthan R, Senger JL, Diudea D. Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins. World J Surg Oncol. 2010;8:60.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Semczuk A, Skomra D, Chyzynska M, Szewczuk W, Olcha P, Korobowicz E. Immunohistochemical analysis of carcinomatous and sarcomatous components in the uterine carcinosarcoma: a case report. Pathol Res Pract. 2008;204(3):203–7.

    Article  PubMed  Google Scholar 

  14. Ng JS, Han AC, Edelson MI, Rosenblum NG. Oncoprotein profiles of primary peritoneal malignant mixed mullerian tumors. Int J Gynecol Cancer. 2003;13(6):870–4.

    Article  CAS  PubMed  Google Scholar 

  15. Buza N, Tavassoli FA. Comparative analysis of P16 and P53 expression in uterine malignant mixed mullerian tumors. Int J Gynecol Pathol. 2009;28(6):514–21.

    Article  PubMed  Google Scholar 

  16. Saglam O, Husain S, Toruner G. AKT, EGFR, C-ErbB-2, and C-kit expression in uterine carcinosarcoma. Int J Gynecol Pathol. 2013;32(5):493–500.

    Article  CAS  PubMed  Google Scholar 

  17. Biscuola M, Van de Vijver K, Castilla MA, Romero-Perez L, Lopez-Garcia MA, Diaz-Martin J, et al. Oncogene alterations in endometrial carcinosarcomas. Hum Pathol. 2013;44(5):852–9.

    Article  CAS  PubMed  Google Scholar 

  18. Guzzo F, Bellone S, Buza N, Hui P, Carrara L, Varughese J, et al. HER2/neu as a potential target for immunotherapy in gynecologic carcinosarcomas. Int J Gynecol Pathol. 2012;31(3):211–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Raspollini MR, Susini T, Amunni G, Paglierani M, Castiglione F, Garbini F, et al. Expression and amplification of HER-2/neu oncogene in uterine carcinosarcomas: a marker for potential molecularly targeted treatment? Int J Gynecol Cancer. 2006;16(1):416–22.

    Article  CAS  PubMed  Google Scholar 

  20. Raspollini MR, Mecacci F, Paglierani M, Marchionni M, Taddei GL. HER-2/neu oncogene in uterine carcinosarcoma on tamoxifen therapy. Pathol Res Pract. 2005;201(2):141–4.

    Article  PubMed  Google Scholar 

  21. Etoh T, Nakai H. Prognostic factors and status of hormone receptors and angiogenic factors in uterine carcinosarcoma. J Obstet Gynaecol Res. 2014;40(3):820–5.

    Article  CAS  PubMed  Google Scholar 

  22. Cimbaluk D, Rotmensch J, Scudiere J, Gown A, Bitterman P. Uterine carcinosarcoma: immunohistochemical studies on tissue microarrays with focus on potential therapeutic targets. Gynecol Oncol. 2007;105(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  23. Roy RN, Gerulath AH, Cecutti A, Bhavnani BR. Loss of IGF-II imprinting in endometrial tumors: overexpression in carcinosarcoma. Cancer Lett. 2000;153(1–2):67–73.

    Article  CAS  PubMed  Google Scholar 

  24. Chiyoda T, Tsuda H, Tanaka H, Kataoka F, Nomura H, Nishimura S, et al. Expression profiles of carcinosarcoma of the uterine corpus-are these similar to carcinoma or sarcoma? Genes Chromosomes Cancer. 2012;51(3):229–39.

    Article  CAS  PubMed  Google Scholar 

  25. Saegusa M, Hashimura M, Kuwata T, Okayasu I. Requirement of the Akt/beta-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug. Am J Pathol. 2009;174(6):2107–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schipf A, Mayr D, Kirchner T, Diebold J. Molecular genetic aberrations of ovarian and uterine carcinosarcomas–a CGH and FISH study. Virchows Arch. 2008;452(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  27. Mao XG, Yan M, Xue XY, Zhang X, Ren HG, Guo G, et al. Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma stem cells regulated by hypoxia-inducible factors. Lab Invest. 2011;91(7):1068–78.

    Article  CAS  PubMed  Google Scholar 

  28. Masuda A, Takeda A, Fukami H, Yamada C, Matsuyama M. Characteristics of cell lines established from a mixed mesodermal tumor of the human ovary. Carcinomatous cells are changeable to sarcomatous cells. Cancer. 1987;60(11):2696–703.

    Article  CAS  PubMed  Google Scholar 

  29. Gorai I, Yanagibashi T, Taki A, Udagawa K, Miyagi E, Nakazawa T, et al. Uterine carcinosarcoma is derived from a single stem cell: an in vitro study. Int J Cancer. 1997;72(5):821–7.

    Article  CAS  PubMed  Google Scholar 

  30. de Jong RA, Nijman HW, Wijbrandi TF, Reyners AK, Boezen HM, Hollema H. Molecular markers and clinical behavior of uterine carcinosarcomas: focus on the epithelial tumor component. Mod Pathol. 2011;24(10):1368–79.

    Article  PubMed  CAS  Google Scholar 

  31. McCluggage WG. Malignant biphasic uterine tumours: carcinosarcomas or metaplastic carcinomas? J Clin Pathol. 2002;55(5):321–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. McCluggage WG. Uterine carcinosarcomas (malignant mixed Mullerian tumors) are metaplastic carcinomas. Int J Gynecol Cancer. 2002;12(6):687–90.

    Article  CAS  PubMed  Google Scholar 

  33. Jin Z, Ogata S, Tamura G, Katayama Y, Fukase M, Yajima M, et al. Carcinosarcomas (malignant mullerian mixed tumors) of the uterus and ovary: a genetic study with special reference to histogenesis. Int J Gynecol Pathol. 2003;22(4):368–73.

    Article  PubMed  Google Scholar 

  34. Holmes BJ, Gown AM, Vang R, Ronnett BM, Yemelyanova A. PAX8 expression in uterine malignant mesodermal mixed tumor (carcinosarcoma). Int J Gynecol Pathol. 2014;33(4):425–31.

    Article  CAS  PubMed  Google Scholar 

  35. Abeler VM, Royne O, Thoresen S, Danielsen HE, Nesland JM, Kristensen GB. Uterine sarcomas in Norway. A histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients. Histopathology. 2009;54(3):355–64.

    Article  PubMed  Google Scholar 

  36. Kapp DS, Shin JY, Chan JK. Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. Cancer. 2008;112(4):820–30.

    Article  PubMed  Google Scholar 

  37. Kurman RJ, Norris HJ. Mesenchymal tumors of the uterus. VI. Epithelioid smooth muscle tumors including leiomyoblastoma and clear-cell leiomyoma: a clinical and pathologic analysis of 26 cases. Cancer. 1976;37(4):1853–65.

    Article  CAS  PubMed  Google Scholar 

  38. D’Angelo E, Prat J. Uterine sarcomas: a review. Gynecol Oncol. 2010;116(1):131–9.

    Article  PubMed  CAS  Google Scholar 

  39. Gokaslan H, Turkeri L, Kavak ZN, Eren F, Sismanoglu A, Ilvan S, et al. Differential diagnosis of smooth muscle tumors utilizing p53, pTEN and Ki-67 expression with estrogen and progesterone receptors. Gynecol Obstet Invest. 2005;59(1):36–40.

    Article  PubMed  CAS  Google Scholar 

  40. Sung CO, Ahn G, Song SY, Choi YL, Bae DS. Atypical leiomyomas of the uterus with long-term follow-up after myomectomy with immunohistochemical analysis for p16INK4A, p53, Ki-67, estrogen receptors, and progesterone receptors. Int J Gynecol Pathol. 2009;28(6):529–34.

    Article  PubMed  Google Scholar 

  41. Petrovic D, Babic D, Forko JI, Martinac I. Expression of Ki-67, P53 and progesterone receptors in uterine smooth muscle tumors. Diagnostic value. Coll Antropol. 2010;34(1):93–7.

    PubMed  Google Scholar 

  42. Hewedi IH, Radwan NA, Shash LS. Diagnostic value of progesterone receptor and p53 expression in uterine smooth muscle tumors. Diagn Pathol. 2012;7:1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Chen L, Yang B. Immunohistochemical analysis of p16, p53, and Ki-67 expression in uterine smooth muscle tumors. Int J Gynecol Pathol. 2008;27(3):326–32.

    Article  PubMed  Google Scholar 

  44. Mittal K, Demopoulos RI. MIB-1 (Ki-67), p53, estrogen receptor, and progesterone receptor expression in uterine smooth muscle tumors. Hum Pathol. 2001;32(9):984–7.

    Article  CAS  PubMed  Google Scholar 

  45. O’Neill CJ, McBride HA, Connolly LE, McCluggage WG. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology. 2007;50(7):851–8.

    Article  PubMed  Google Scholar 

  46. Jeffers MD, Farquharson MA, Richmond JA, McNicol AM. p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol. 1995;177(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  47. Akhan SE, Yavuz E, Tecer A, Iyibozkurt CA, Topuz S, Tuzlali S, et al. The expression of Ki-67, p53, estrogen and progesterone receptors affecting survival in uterine leiomyosarcomas. A clinicopathologic study. Gynecol Oncol. 2005;99(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  48. Skubitz KM, Skubitz AP. Differential gene expression in leiomyosarcoma. Cancer. 2003;98(5):1029–38.

    Article  CAS  PubMed  Google Scholar 

  49. Kawaguchi K, Oda Y, Saito T, Yamamoto H, Tamiya S, Takahira T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis. J Pathol. 2003;201(3):487–95.

    Article  CAS  PubMed  Google Scholar 

  50. Bodner-Adler B, Bodner K, Czerwenka K, Kimberger O, Leodolter S, Mayerhofer K. Expression of p16 protein in patients with uterine smooth muscle tumors: an immunohistochemical analysis. Gynecol Oncol. 2005;96(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  51. Atkins KA, Arronte N, Darus CJ, Rice LW. The use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol. 2008;32(1):98–102.

    Article  PubMed  Google Scholar 

  52. Gannon BR, Manduch M, Childs TJ. Differential immunoreactivity of p16 in leiomyosarcomas and leiomyoma variants. Int J Gynecol Pathol. 2008;27(1):68–73.

    Article  PubMed  Google Scholar 

  53. Lee CH, Turbin DA, Sung YC, Espinosa I, Montgomery K, van de Rijn M, et al. A panel of antibodies to determine site of origin and malignancy in smooth muscle tumors. Mod Pathol. 2009;22(12):1519–31.

    Article  CAS  PubMed  Google Scholar 

  54. Hakverdi S, Gungoren A, Yaldiz M, Hakverdi AU, Toprak S. Immunohistochemical analysis of p16 expression in uterine smooth muscle tumors. Eur J Gynaecol Oncol. 2011;32(5):513–5.

    CAS  PubMed  Google Scholar 

  55. Unver NU, Acikalin MF, Oner U, Ciftci E, Ozalp SS, Colak E. Differential expression of P16 and P21 in benign and malignant uterine smooth muscle tumors. Arch Gynecol Obstet. 2011;284(2):483–90.

    Article  CAS  PubMed  Google Scholar 

  56. Ly A, Mills AM, McKenney JK, Balzer BL, Kempson RL, Hendrickson MR, et al. Atypical leiomyomas of the uterus: a clinicopathologic study of 51 cases. Am J Surg Pathol. 2013;37(5):643–9.

    Article  PubMed  Google Scholar 

  57. Kefeli M, Yildiz L, Kaya FC, Aydin O, Kandemir B. Fascin expression in uterine smooth muscle tumors. Int J Gynecol Pathol. 2009;28(4):328–33.

    Article  PubMed  Google Scholar 

  58. Grogg KL, Macon WR, Kurtin PJ, Nascimento AG. A survey of clusterin and fascin expression in sarcomas and spindle cell neoplasms: strong clusterin immunostaining is highly specific for follicular dendritic cell tumor. Mod Pathol. 2005;18(2):260–6.

    Article  CAS  PubMed  Google Scholar 

  59. Brewer Savannah KJ, Demicco EG, Lusby K, Ghadimi MP, Belousov R, Young E, et al. Dual targeting of mTOR and aurora-A kinase for the treatment of uterine Leiomyosarcoma. Clin Cancer Res. 2012;18(17):4633–45.

    Article  CAS  PubMed  Google Scholar 

  60. Perot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, et al. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7(6):e40015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. de Vos S, Wilczynski SP, Fleischhacker M, Koeffler P. p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol. 1994;54(2):205–8.

    Article  CAS  PubMed  Google Scholar 

  62. Hall KL, Teneriello MG, Taylor RR, Lemon S, Ebina M, Linnoila RI, et al. Analysis of Ki-ras, p53, and MDM2 genes in uterine leiomyomas and leiomyosarcomas. Gynecol Oncol. 1997;65(2):330–5.

    Article  CAS  PubMed  Google Scholar 

  63. Zhai YL, Nikaido T, Orii A, Horiuchi A, Toki T, Fujii S. Frequent occurrence of loss of heterozygosity among tumor suppressor genes in uterine leiomyosarcoma. Gynecol Oncol. 1999;75(3):453–9.

    Article  CAS  PubMed  Google Scholar 

  64. Zhai YL, Nikaido T, Toki T, Shiozawa A, Orii A, Fujii S. Prognostic significance of bcl-2 expression in leiomyosarcoma of the uterus. Br J Cancer. 1999;80(10):1658–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Miyajima K, Tamiya S, Oda Y, Adachi T, Konomoto T, Toyoshiba H, et al. Relative quantitation of p53 and MDM2 gene expression in leiomyosarcoma; real-time semi-quantitative reverse transcription-polymerase chain reaction. Cancer Lett. 2001;164(2):177–88.

    Article  CAS  PubMed  Google Scholar 

  66. Ito M, Barys L, O’Reilly T, Young S, Gorbatcheva B, Monahan J, et al. Comprehensive mapping of p53 pathway alterations reveals an apparent role for both SNP309 and MDM2 amplification in sarcomagenesis. Clin Cancer Res. 2011;17(3):416–26.

    Article  CAS  PubMed  Google Scholar 

  67. Politi K, Szabolcs M, Fisher P, Kljuic A, Ludwig T, Efstratiadis A. A mouse model of uterine leiomyosarcoma. Am J Pathol. 2004;164(1):325–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Yang J, Du X, Chen K, Ylipaa A, Lazar AJ, Trent J, et al. Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett. 2009;275(1):1–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Baird K, Davis S, Antonescu CR, Harper UL, Walker RL, Chen Y, et al. Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res. 2005;65(20):9226–35.

    Article  CAS  PubMed  Google Scholar 

  70. Beck AH, Lee CH, Witten DM, Gleason BC, Edris B, Espinosa I, et al. Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene. 2010;29(6):845–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Kobayashi H, Uekuri C, Akasaka J, Ito F, Shigemitsu A, Koike N, et al. The biology of uterine sarcomas: a review and update. Mol Clin Oncol. 2013;1(4):599–609.

    PubMed Central  PubMed  Google Scholar 

  72. Quade BJ, Pinto AP, Howard DR, Peters III WA, Crum CP. Frequent loss of heterozygosity for chromosome 10 in uterine leiomyosarcoma in contrast to leiomyoma. Am J Pathol. 1999;154(3):945–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. El-Rifai W, Sarlomo-Rikala M, Knuutila S, Miettinen M. DNA copy number changes in development and progression in leiomyosarcomas of soft tissues. Am J Pathol. 1998;153(3):985–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Levy B, Mukherjee T, Hirschhorn K. Molecular cytogenetic analysis of uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization. Cancer Genet Cytogenet. 2000;121(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  75. Hu J, Khanna V, Jones M, Surti U. Genomic alterations in uterine leiomyosarcomas: potential markers for clinical diagnosis and prognosis. Genes Chromosomes Cancer. 2001;31(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  76. Hu J, Rao UN, Jasani S, Khanna V, Yaw K, Surti U. Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet Cytogenet. 2005;161(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  77. Raish M, Khurshid M, Ansari MA, Chaturvedi PK, Bae SM, Kim JH, et al. Analysis of molecular cytogenetic alterations in uterine leiomyosarcoma by array-based comparative genomic hybridization. J Cancer Res Clin Oncol. 2012;138(7):1173–86.

    Article  CAS  PubMed  Google Scholar 

  78. Morton CC. Genetic approaches to the study of uterine leiomyomata. Environ Health Perspect. 2000;108 Suppl 5:775–8.

    Article  PubMed  Google Scholar 

  79. Jatoi N. Leiomyosarcoma: a rare malignant change in a leiomyoma. J Coll Physicians Surg Pak. 2003;13(2):106–7.

    PubMed  Google Scholar 

  80. Kir G, Eren S, Akoz I, Kir M. Leiomyosarcoma of the broad ligament arising in a pre-existing pure neurilemmoma-like leiomyoma. Eur J Gynaecol Oncol. 2003;24(6):505–6.

    CAS  PubMed  Google Scholar 

  81. Scurry J, Hack M. Leiomyosarcoma arising in a lipoleiomyoma. Gynecol Oncol. 1990;39(3):381–3.

    Article  CAS  PubMed  Google Scholar 

  82. Mittal KR, Chen F, Wei JJ, Rijhvani K, Kurvathi R, Streck D, et al. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol. 2009;22(10):1303–11.

    Article  CAS  PubMed  Google Scholar 

  83. Hernando E, Charytonowicz E, Dudas ME, Menendez S, Matushansky I, Mills J, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007;13(6):748–53.

    Article  CAS  PubMed  Google Scholar 

  84. Bell SW, Kempson RL, Hendrickson MR. Problematic uterine smooth muscle neoplasms. A clinicopathologic study of 213 cases. Am J Surg Pathol. 1994;18(6):535–58.

    Article  CAS  PubMed  Google Scholar 

  85. Evans HL, Chawla SP, Simpson C, Finn KP. Smooth muscle neoplasms of the uterus other than ordinary leiomyoma. A study of 46 cases, with emphasis on diagnostic criteria and prognostic factors. Cancer. 1988;62(10):2239–47.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Q, Ubago J, Li L, Guo H, Liu Y, Qiang W, Kim JJ, Kong B, Wei JJ. Molecular analyses of 6 different types of uterine smooth muscle tumors: Emphasis in atypical leiomyoma. Cancer. 2014;120(20):3165–77.

    Article  CAS  PubMed  Google Scholar 

  87. Croce S, Young RH, Oliva E. Uterine leiomyomas with bizarre nuclei: a clinicopathologic study of 59 cases. Am J Surg Pathol. 2014;38(10):1330–9.

    Article  PubMed  Google Scholar 

  88. Mills AM, Ly A, Balzer BL, Hendrickson MR, Kempson RL, McKenney JK, et al. Cell cycle regulatory markers in uterine atypical leiomyoma and leiomyosarcoma: immunohistochemical study of 68 cases with clinical follow-up. Am J Surg Pathol. 2013;37(5):634–42.

    Article  PubMed  Google Scholar 

  89. Makinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM, Aaltonen LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2011;2(12):966–9.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science (New York). 2011;334(6053):252–5.

    Article  CAS  Google Scholar 

  91. Je EM, Kim MR, Min KO, Yoo NJ, Lee SH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044–7.

    Article  CAS  PubMed  Google Scholar 

  92. Kampjarvi K, Makinen N, Kilpivaara O, Arola J, Heinonen HR, Bohm J, et al. Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer. 2012;107(10):1761–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Kuhn E, Yemelyanova A, Wang T-L, Kurman R, Shih I-M. Abstract 5536: TP53 and MED12 mutations in uterine smooth muscle tumors. Cancer Res. 2012;72(8 Suppl):5536.

    Article  Google Scholar 

  94. Markowski DN, Bartnitzke S, Loning T, Drieschner N, Helmke BM, Bullerdiek J. MED12 mutations in uterine fibroids--their relationship to cytogenetic subgroups. Int J Cancer. 2012;131(7):1528–36.

    Article  CAS  PubMed  Google Scholar 

  95. McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7(3), e33251.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovee JV. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 2013;44(8):1597–604.

    Article  PubMed  CAS  Google Scholar 

  97. Makinen N, Vahteristo P, Kampjarvi K, Arola J, Butzow R, Aaltonen LA. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 2013;21(11):1300–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, et al. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62(4):657–61.

    Article  PubMed  Google Scholar 

  99. Ravegnini G, Marino-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, et al. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  100. Schwetye KE, Pfeifer JD, Duncavage EJ. MED12 exon 2 mutations in uterine and extrauterine smooth muscle tumors. Hum Pathol. 2014;45(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  101. Bertsch E, Qiang W, Zhang Q, Espona-Fiedler M, Druschitz S, Liu Y, et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27(8):1144–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Ip PP, Cheung AN, Clement PB. Uterine smooth muscle tumors of uncertain malignant potential (STUMP): a clinicopathologic analysis of 16 cases. Am J Surg Pathol. 2009;33(7):992–1005.

    Article  PubMed  Google Scholar 

  103. Guntupalli SR, Ramirez PT, Anderson ML, Milam MR, Bodurka DC, Malpica A. Uterine smooth muscle tumor of uncertain malignant potential: a retrospective analysis. Gynecol Oncol. 2009;113(3):324–6.

    Article  PubMed  Google Scholar 

  104. Ng JS, Han A, Chew SH, Low J. A clinicopathologic study of uterine smooth muscle tumours of uncertain malignant potential (STUMP). Ann Acad Med Singapore. 2010;39(8):625–8.

    PubMed  Google Scholar 

  105. Chan JK, Kawar NM, Shin JY, Osann K, Chen LM, Powell CB, et al. Endometrial stromal sarcoma: a population-based analysis. Br J Cancer. 2008;99(8):1210–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Chang KL, Crabtree GS, Lim-Tan SK, Kempson RL, Hendrickson MR. Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol. 1990;14(5):415–38.

    Article  CAS  PubMed  Google Scholar 

  107. Felix AS, Cook LS, Gaudet MM, Rohan TE, Schouten LJ, Setiawan VW, et al. The etiology of uterine sarcomas: a pooled analysis of the epidemiology of endometrial cancer consortium. Br J Cancer. 2013;108(3):727–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Kennedy MM, Baigrie CF, Manek S. Tamoxifen and the endometrium: review of 102 cases and comparison with HRT-related and non-HRT-related endometrial pathology. Int J Gynecol Pathol. 1999;18(2):130–7.

    Article  CAS  PubMed  Google Scholar 

  109. Norris HJ, Taylor HB. Mesenchymal tumors of the uterus. I. A clinical and pathological study of 53 endometrial stromal tumors. Cancer. 1966;19(6):755–66.

    Google Scholar 

  110. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology. 2001;39(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  111. Chu PG, Arber DA, Weiss LM, Chang KL. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol. 2001;14(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  112. Oliva E, Young RH, Amin MB, Clement PB. An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol. 2002;26(4):403–12.

    Article  PubMed  Google Scholar 

  113. Jung CK, Jung JH, Lee A, Lee YS, Choi YJ, Yoon SK, et al. Diagnostic use of nuclear beta-catenin expression for the assessment of endometrial stromal tumors. Mod Pathol. 2008;21(6):756–63.

    Article  CAS  PubMed  Google Scholar 

  114. Sumathi VP, Al-Hussaini M, Connolly LE, Fullerton L, McCluggage WG. Endometrial stromal neoplasms are immunoreactive with WT-1 antibody. Int J Gynecol Pathol. 2004;23(3):241–7.

    Article  CAS  PubMed  Google Scholar 

  115. Reich O, Regauer S, Urdl W, Lahousen M, Winter R. Expression of oestrogen and progesterone receptors in low-grade endometrial stromal sarcomas. Br J Cancer. 2000;82(5):1030–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. de Leval L, Waltregny D, Boniver J, Young RH, Castronovo V, Oliva E. Use of histone deacetylase 8 (HDAC8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus. Am J Surg Pathol. 2006;30(3):319–27.

    PubMed  Google Scholar 

  117. Rushing RS, Shajahan S, Chendil D, Wilder JL, Pulliam J, Lee EY, et al. Uterine sarcomas express KIT protein but lack mutation(s) in exon 11 or 17 of c-KIT. Gynecol Oncol. 2003;91(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  118. Irving JA, Carinelli S, Prat J. Uterine tumors resembling ovarian sex cord tumors are polyphenotypic neoplasms with true sex cord differentiation. Mod Pathol. 2006;19(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  119. Parra-Herran CE, Yuan L, Nucci MR, Quade BJ. Targeted development of specific biomarkers of endometrial stromal cell differentiation using bioinformatics: the IFITM1 model. Mod Pathol. 2014;27(4):569–79.

    Article  CAS  PubMed  Google Scholar 

  120. Dal Cin P, Talcott J, Abrams J, Li FP, Sandberg AA. Ins(10;19) in an endometrial stromal sarcoma. Cancer Genet Cytogenet. 1988;36(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  121. Chiang S, Ali R, Melnyk N, McAlpine JN, Huntsman DG, Gilks CB, et al. Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol. 2011;35(9):1364–72.

    Article  PubMed  Google Scholar 

  122. Halbwedl I, Ullmann R, Kremser ML, Man YG, Isadi-Moud N, Lax S, et al. Chromosomal alterations in low-grade endometrial stromal sarcoma and undifferentiated endometrial sarcoma as detected by comparative genomic hybridization. Gynecol Oncol. 2005;97(2):582–7.

    Article  CAS  PubMed  Google Scholar 

  123. Hrzenjak A, Moinfar F, Tavassoli FA, Strohmeier B, Kremser ML, Zatloukal K, et al. JAZF1/JJAZ1 gene fusion in endometrial stromal sarcomas: molecular analysis by reverse transcriptase-polymerase chain reaction optimized for paraffin-embedded tissue. J Mol Diagn. 2005;7(3):388–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Micci F, Panagopoulos I, Bjerkehagen B, Heim S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res. 2006;66(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  125. Panagopoulos I, Micci F, Thorsen J, Gorunova L, Eibak AM, Bjerkehagen B, et al. Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS One. 2012;7(6), e39354.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Dewaele B, Przybyl J, Quattrone A, Finalet Ferreiro J, Vanspauwen V, Geerdens E, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer. 2014;134(5):1112–22.

    Article  CAS  PubMed  Google Scholar 

  127. Lee CH, Ou WB, Marino-Enriquez A, Zhu M, Mayeda M, Wang Y, et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109(3):929–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Lee CH, Ali RH, Rouzbahman M, Marino-Enriquez A, Zhu M, Guo X, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36(10):1562–70.

    Article  PubMed Central  PubMed  Google Scholar 

  129. Lee CH, Hoang LN, Yip S, Reyes C, Marino-Enriquez A, Eilers G, et al. Frequent expression of KIT in endometrial stromal sarcoma with YWHAE genetic rearrangement. Mod Pathol. 2014;27(5):751–7.

    Article  CAS  PubMed  Google Scholar 

  130. Kurihara S, Oda Y, Ohishi Y, Kaneki E, Kobayashi H, Wake N, et al. Coincident expression of beta-catenin and cyclin D1 in endometrial stromal tumors and related high-grade sarcomas. Mod Pathol. 2010;23(2):225–34.

    Article  CAS  PubMed  Google Scholar 

  131. Koontz JI, Soreng AL, Nucci M, Kuo FC, Pauwels P, van Den Berghe H, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98(11):6348–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Nucci MR, Harburger D, Koontz J, Dal Cin P, Sklar J. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31(1):65–70.

    Article  PubMed  Google Scholar 

  133. Abeler VM, Nenodovic M. Diagnostic immunohistochemistry in uterine sarcomas: a study of 397 cases. Int J Gynecol Pathol. 2011;30(3):236–43.

    Article  PubMed  Google Scholar 

  134. Ducimetiere F, Lurkin A, Ranchere-Vince D, Decouvelaere AV, Peoc’h M, Istier L, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6(8), e20294.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Kurihara S, Oda Y, Ohishi Y, Iwasa A, Takahira T, Kaneki E, et al. Endometrial stromal sarcomas and related high-grade sarcomas: immunohistochemical and molecular genetic study of 31 cases. Am J Surg Pathol. 2008;32(8):1228–38.

    Article  PubMed  Google Scholar 

  136. Malouf GG, Lhomme C, Duvillard P, Morice P, Haie-Meder C, Pautier P. Prognostic factors and outcome of undifferentiated endometrial sarcoma treated by multimodal therapy. Int J Gynaecol Obstet. 2013;122(1):57–61.

    Article  PubMed  Google Scholar 

  137. Gil-Benso R, Lopez-Gines C, Navarro S, Carda C, Llombart-Bosch A. Endometrial stromal sarcomas: immunohistochemical, electron microscopical and cytogenetic findings in two cases. Virchows Arch. 1999;434(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  138. Arend R, Bagaria M, Lewin SN, Sun X, Deutsch I, Burke WM, et al. Long-term outcome and natural history of uterine adenosarcomas. Gynecol Oncol. 2010;119(2):305–8.

    Article  PubMed  Google Scholar 

  139. McCluggage WG. Mullerian adenosarcoma of the female genital tract. Adv Anat Pathol. 2010;17(2):122–9.

    Article  PubMed  Google Scholar 

  140. Aggarwal N, Bhargava R, Elishaev E. Uterine adenosarcomas: diagnostic use of the proliferation marker Ki-67 as an adjunct to morphologic diagnosis. Int J Gynecol Pathol. 2012;31(5):447–52.

    Article  CAS  PubMed  Google Scholar 

  141. Soslow RA, Ali A, Oliva E. Mullerian adenosarcomas: an immunophenotypic analysis of 35 cases. Am J Surg Pathol. 2008;32(7):1013–21.

    Article  PubMed  Google Scholar 

  142. Amant F, Schurmans K, Steenkiste E, Verbist L, Abeler VM, Tulunay G, et al. Immunohistochemical determination of estrogen and progesterone receptor positivity in uterine adenosarcoma. Gynecol Oncol. 2004;93(3):680–5.

    Article  CAS  PubMed  Google Scholar 

  143. Amant F, Steenkiste E, Schurmans K, Verbist L, Abeler VM, Tulunay G, et al. Immunohistochemical expression of CD10 antigen in uterine adenosarcoma. Int J Gynecol Cancer. 2004;14(6):1118–21.

    Article  CAS  PubMed  Google Scholar 

  144. Tesfaye A, Di Cello F, Hillion J, Ronnett BM, Elbahloul O, Ashfaq R, et al. The high-mobility group A1 gene up-regulates cyclooxygenase 2 expression in uterine tumorigenesis. Cancer Res. 2007;67(9):3998–4004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Mrs. Stacy Kujawa for her assistance in editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Wei MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Q., Wei, JJ. (2016). Putative Precursors of Uterine Sarcomas. In: Fadare, O. (eds) Precancerous Lesions of the Gynecologic Tract. Springer, Cham. https://doi.org/10.1007/978-3-319-22509-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22509-8_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22508-1

  • Online ISBN: 978-3-319-22509-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics