Skip to main content

Abstract

2D and stereo Digital Image Correlation (DIC) allows to retrieve complex displacement and strain fields on a specimen’s surface. Although 2D DIC is strongly affected by out-of-plane motions, in many situations, it is preferred over stereo DIC because of its ease to use and because only one camera is required. The out-of-plane movements can be ascribed mainly to three causes: the camera positioning, the imperfections of the used test device, and the camera self-heating. These effects gain importance when the distance between the camera and the specimen is reduced. The positioning of the camera aims to have its optical axis perfectly perpendicular to the specimen to observe. Nevertheless small but effective misalignments can easily happen even if suitable devices are used for the alignment. This contribution concerns the experimental evaluation of these movements considering a cyclic uni-axial tensile test performed on an aluminium specimen. The study is particularly focused to the out-of-plane motions that occur at every cycle because of the tensile bench, which are the more critical ones. Finally a compensation method, based on fixed compensation plates, is presented. The method allows to properly correct the data coming from a 2D DIC set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Chalal, S. Avril, F. Pierron, F. Meraghni, Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method. Compos. Appl. Sci. 37(2), 315–325 (2006)

    Article  Google Scholar 

  2. J.-L. Piro, M. Grédiac, Producing and transferring low-spatial-frequency grids of measuring displacement fields with moiré and grid methods. Exp. Tech. 28, 23–26 (2004)

    Article  Google Scholar 

  3. P.M. Boone, A.G. Vinckier, R.M. Denys, W.M. Sys, E.N. Deleu, Application of specimen-grid moiré techniques in large scale steel testing. Opt. Eng. 21(4), 615–625 (1982)

    Article  Google Scholar 

  4. M. Sjödahl, Recent advances in electronic speckle photography. Opt. Lasers Eng. 29, 125–144 (1998)

    Article  Google Scholar 

  5. M.A. Sutton, J.-J. Orteu, H.W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, New York, 2009)

    Google Scholar 

  6. S. Avril, M. Bonnet, A.-S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron, Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 38, 381–402 (2008)

    Article  Google Scholar 

  7. M. Grédiac, F. Pierron, S. Avril, E. Toussaint, The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42, 233–253 (2006)

    Article  Google Scholar 

  8. F. Pierron, M. Grédiac, The Virtual Fields Method (Springer, New York, 2012)

    Book  Google Scholar 

  9. S. Cooreman, D. Lecompte, H. Sol, J. Vantomme, D. Debruyne, Identification of mechanical material behavior through inverse modeling and {DIC}. Exp. Mech. 48(4), 421–433 (2008)

    Article  Google Scholar 

  10. D. Lecompte, S. Cooreman, S. Coppieters, J. Vantomme, H. Sol, D. Debruyne, Parameter identification for anisotropic plasticity model using digital image correlation: Comparison between uni-axial and bi-axial tensile testing. Eur. J. Comput. Mech. 18, 393–418 (2009)

    Google Scholar 

  11. M. Rossi, F. Pierron, On the use of simulated experiments in designing test for material characterization from full-field measurement. Int. J. Solid. Struct. 49, 420–435 (2012)

    Article  Google Scholar 

  12. M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, B. Wattrisse, Assessment of digital image correlation measurement errors: methodology and results. Exp. Mech. 49, 353–370 (2009)

    Article  Google Scholar 

  13. P. Lava, S. Cooreman, S. Coppieters, M. De Strycker, D. Debruyne, Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt. Lasers Eng. 47, 747–753 (2009)

    Article  Google Scholar 

  14. P. Lava, S. Cooreman, D. Debruyne, Study of systematic errors in strain fields obtained via DIC using heterogeneous deformation generated by plastic FEA. Opt. Lasers Eng. 48, 457–468 (2010)

    Article  Google Scholar 

  15. Y. Wang, P. Lava, S. Coppieters, P. De Strycker, P. Van Houtte, D. Debruyne, Investigation of the uncertainty of DIC under heterogeneous strain states with numerical test. Strain 48(6), 453–462 (2012)

    Article  Google Scholar 

  16. M. Rossi, P. Lava, F. Pierron, D. Debruyne, M. Sasso, Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM. Strain 51(3), 206–222 (2015)

    Article  Google Scholar 

  17. M. Rossi, M. Badaloni, P. Lava, D. Debruyne, G. Chiappini, M. Sasso, Advanced test simulator to reproduce experiments at small and large deformations. Conf. Proc. Soc. Exp. Mech. Ser. 3, 27–33 (2014)

    Article  Google Scholar 

  18. M. Badaloni, M. Rossi, G. Chiappini, P. Lava, D. Debruyne, D, Impact of experimental uncertainties on the identification of mechanical material properties using DIC. Exp.Mech. (2015) DOI: 10.1007/s11340-015-0039-8

    Google Scholar 

  19. Q. Ma, S. Ma, Experimental investigation of the systematic error on photomechanic methods induced by camera self-heating. Opt. Soc. Am. 21(6), 7686–7698 (2013)

    Google Scholar 

  20. A. Hijazi, A. Friedl, C.J. Kahler, Influence of camera’s optical axis non-perpendicularity on measurement accuracy of two-dimensional digital image correlation. Jourdan J. Mech. Ind. Eng. 4, 373–382 (2011)

    Google Scholar 

  21. P. Lava, S. Coppieters, Y. Wang, P. Van Houtte, D. Debruyne, Error estimation in measuring strain fields with DIC on planar sheet metal specimens with a non-perpendicular camera alignment. Opt. Lasers Eng. 49, 57–65 (2012)

    Article  Google Scholar 

  22. B. Pan, L. Yu, D. Wu, High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method. Meas. Sci. Technol. 25(2), 025001 (2014)

    Article  Google Scholar 

  23. M.A. Sutton, J.H. Yan, V. Tiwari, H.W. Schreier, J.-J. Orteu, The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt. Lasers Eng. 46, 746–757 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Badaloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Badaloni, M., Lava, P., Rossi, M., Chiappini, G., Debruyne, D. (2016). Out-of-Plane Motion Evaluation and Correction in 2D DIC. In: Jin, H., Yoshida, S., Lamberti, L., Lin, MT. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22446-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22446-6_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22445-9

  • Online ISBN: 978-3-319-22446-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics