Skip to main content

Quasars as Probes of Cosmological Reionization

  • Chapter
Understanding the Epoch of Cosmic Reionization

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 423))

Abstract

Quasars are the most luminous non-transient sources in the epoch of cosmological reionization (which ended a billion years after the Big Bang, corresponding to a redshift of zā€‰ā‰ƒā€‰5), and are powerful probes of the inter-galactic medium at that time. This review covers current efforts to identify high-redshift quasars and how they have been used to constrain the reionization history. This includes a full description of the various processes by which neutral hydrogen atoms can absorb/scatter ultraviolet photons, and which lead to the Gunn-Peterson effect, dark gap and dark pixel analyses, quasar near zones and damping wing absorption. Finally, the future prospects for using quasars as probes of reionization are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An up-to-date and expanded version of this table in machine-readable form is available from the author.

  2. 2.

    Strictly, it is the flux at Earth which is the relevant quantity but, as can be seen from Fig.ā€‰2, the decrease in flux with redshift across the reionization epoch is considerably smaller than the range of quasar luminosities, so M 1450 is an excellent proxy for the likely utility of any single source.

  3. 3.

    The recently discovered quasars PSOĀ J0226+0302 [30], at zā€‰=ā€‰6.ā€‰53 and unusually bright, and SDSSĀ J0100+2802 [31], at zā€‰=ā€‰6.ā€‰30 and a factor of a few more luminous than any other known HZQ, will presumably be key sources in the future, but as yet have not been subject to full follow-up campaigns.

  4. 4.

    It would be more in keeping with astronomical conventions to give the cross section in terms of wavelength, \( \lambda = c/\nu \); and it is standard in quantum physics to use angular frequency, Ļ‰ā€‰=ā€‰2Ļ€ Ī½, or sometimes energy, Eā€‰=ā€‰h Ī½. Frequency is used here it is more directly linked to the physics of the scattering processes than wavelength, while being more commonly used in astronomy than angular frequency. The argument of the cross section Ļƒ(.ā€‰) is always frequency here.

  5. 5.

    SI units are used here; in cgs units \( \epsilon _{0} = 1/(4\pi ) \) is effectively dimensionless.

  6. 6.

    Here ionizing photons are those with an energy of \( E > 13.6\mbox{ eV} = 2.18 \times 10^{-18}\mbox{ J} \), or a wavelength of Ī»ā€‰<ā€‰0.ā€‰0912ā€‰Ī¼m, sufficient to remove a ground state electron from a hydrogen atom.

  7. 7.

    The Hā€‰iiĀ region formed by a quasar surrounded by a predominantly neutral IGM is similar to a classical Strƶmgren sphere formed by an O or B star [101]. The main difference is that a Strƶmgren sphere is static, the continuous emission of ionizing radiation being balanced by recombinations in the inter-stellar medium, whereas the density of the IGM during reionization is so low that the Hā€‰iiĀ region around a high-redshift quasar can be expected to grow for the entirety of the quasarā€™s lifetime.

  8. 8.

    The fact that the ionization front grows at an appreciable fraction of the speed of light implies that care must be taken when calculating the time that the quasar has been emitting ionizing radiation; but the fact that the observed photons and the ionizing photons take the same time to reach the edge of the NZ leads to an exact cancellation in the case of the line-of-sight observations discussed in Sect.ā€‰6.1 [8, 106].

  9. 9.

    The physical processes that produce a quasar NZ at zĀ \( \buildrel > \over \sim \)Ā 6 are the same as those responsible for the proximity effect (e.g., [117]) in lower redshift quasars.

  10. 10.

    EquationĀ (33) makes it clear that estimates for both Ī“ ion and T q are needed if any attempt is to be made to infer f HI from the scale of either the NZ or the Hā€‰iiĀ region. It is at least plausible to assume that the ionization rate is proportional to the quasarā€™s luminosity, L, at the moment of observation, leading to the use of the ā€œcorrectedā€ NZ radius [3] \( R_{\mathrm{NZ,corr}} = R_{\mathrm{NZ}}\,10^{2/5[M_{1450}-(-27)]/3} \propto R_{\mathrm{NZ}}/L^{1/3} \), defined so that quasars of different luminosities can be compared on an approximately equal footing.

  11. 11.

    This is not an issue with GRBs, which have very smooth spectra at these wavelengths (e.g., [137ā€“139]).

References

  1. X. Fan, C. L. Carilli, and B. Keating. Observational Constraints on Cosmic Reionization. ARA&A, 44:415ā€“462, sep 2006.

    Google ScholarĀ 

  2. S. G. Djorgovski, M. Bogosavljevic, and A. Mahabal. Quasars as probes of late reionization and early structure formation. NAR, 50:140ā€“145, March 2006.

    ArticleĀ  Google ScholarĀ 

  3. X. Fan et al. Constraining the evolution of the ionizing background and the epoch of reionization with z āˆ¼ 6 quasars. II. A sample of 19 quasars. AJ, 132:117ā€“136, jul 2006.

    Google ScholarĀ 

  4. I. D. McGreer, A. Mesinger, and X. Fan. The first (nearly) model-independent constraint on the neutral hydrogen fraction at z āˆ¼ 6. MNRAS, 415:3237ā€“3246, August 2011.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. P. J. E. Peebles. Principles of Physical Cosmology. Princeton University Press, 1993.

    Google ScholarĀ 

  6. J. A. Peacock. Cosmological Physics. Cambridge University Press, January 1999.

    MATHĀ  Google ScholarĀ 

  7. X. Fan, M. A. Strauss, D. P. Schneider, et al. A survey of z > 5. 7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. AJ, 125:1649ā€“1659, apr 2003.

    Google ScholarĀ 

  8. R. L. White, R. H. Becker, X. Fan, and M. A. Strauss. Probing the ionization state of the Universe at z > 6. AJ, 126:1ā€“14, July 2003.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. J. Greinder et al. GRB 080913 at redshift 6.7. ApJ, 693:1610ā€“1620, March 2009.

    Google ScholarĀ 

  10. M. Iye et al. A galaxy at a redshift z 6.96. Nature, 443:186ā€“188, September 2006.

    Google ScholarĀ 

  11. C. Hazard, M. B. Mackey, and A. J. Shimmins. Investigation of the Radio Source 3C273 by the method of Lunar Occultations. Nature, 197:1037, March 1963.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. M. Schmidt. 3C 273: A star-like object with large red-shift. Nature, 197:1040ā€“1041, mar 1963.

    Google ScholarĀ 

  13. M. J. Rees. Black Hole Models for Active Galactic Nuclei. ARAA, 22:471ā€“506, 1984.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. X. Fan et al. A survey of z > 5. 8 quasars in the Sloan Digital Sky Survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z āˆ¼ 6. AJ, 122:2833ā€“2849, dec 2001.

    Google ScholarĀ 

  15. C. J. Willott et al. The Canada-France High-z Quasar Survey: Nine new quasars and the luminosity function at redshift 6. AJ, 139:906ā€“918, March 2010.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. I. D. McGreer, R. H. Becker, D. J. Helfand, and R. L. White. Discovery of a z 6.1 Radio-Loud Quasar in the NOAO Deep Wide Field Survey. ApJ, 652:157ā€“162, nov 2006.

    Google ScholarĀ 

  17. R. J Cool et al. The Discovery of Three New z > 5 Quasars in the AGN and Galaxy Evolution Survey. AJ, 132:823ā€“830, aug 2006.

    Google ScholarĀ 

  18. G. R. Zeimann, R. L. White, R. H. Becker, J. A. Hodge, S. A. Stanford, and G. T. Richards. Discovery of a Radio-selected z āˆ¼ 6 Quasar. ApJ, 736:57, July 2011.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. D. G. York et al. The Sloan Digital Sky Survey: Technical summary. AJ, 120:1579ā€“1587, September 2000.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. P. Astier et al. The Supernova Legacy Survey: measurement of Ī© M , Ī© A and w from the first year data set. A&A, 447:31ā€“48, February 2006.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. S. D. J. Gwyn. The Canada-France-Hawaii Telescope Legacy Survey: Stacked Images and Catalogs. AJ, 143:38, February 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  22. N. Kaiser et al. volume 4836 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 154, December 2002.

    Google ScholarĀ 

  23. K. W. Hodapp et al. Design of the Pan-STARRS telescopes. Astronomische Nachrichten, 325:636ā€“642, October 2004.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. A. Lawrence et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). MNRAS, 379:1599ā€“1617, August 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  25. W. Sutherland et al. The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, Technical Overview and Performance. A&A, 575, A25, March 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  26. C. J. Willott et al. Four quasars above redshift 6 discovered by the Canada-France High-z Quasar Survey. AJ, 134:2435ā€“2450, December 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. L. Jiang et al. A Survey of z āˆ¼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. a Flux-Limited Sample at z AB < 21. AJ, 135:1057ā€“1066, March 2008.

    Google ScholarĀ 

  28. D. J. Mortlock, M. Patel, S. J. Warren, P. C. Hewett, B. P. Venemans, R. G. McMahon, and C. Simpson. Probabilistic selection of high-redshift quasars. MNRAS, 419:390ā€“410, January 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  29. D. J. Mortlock et al. A luminous quasar at a redshift of z7. 085. Nature, 474:616ā€“619, June 2011.

    Google ScholarĀ 

  30. B. P. Venemans et al. The identification of z-dropouts in Pan-STARRS1: three quasars at 6. 5 < z < 6. 7. ApJ, 801, L11, February 2015.

    Google ScholarĀ 

  31. X.-B. Wu, F. Wang, X. Fan, W. Yi, W. Zuo, F. Bian, L. Jiang, I. D. McGreer, R. Wang, J. Yang, Q. Yang, D. Thompson, and Y. Beletsky. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature, 518:512ā€“515, February 2015.

    Google ScholarĀ 

  32. X. Fan et al. A survey of z > 5. 7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars. AJ, 128:515ā€“522, aug 2004.

    Google ScholarĀ 

  33. C. L. Carilli et al. Ionization near zones associated with quasars at z āˆ¼ 6. ApJ, 714:834ā€“839, May 2010.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. J. D. Kurk et al. Black Hole Masses and Enrichment of z āˆ¼ 6 SDSS Quasars. ApJ, 669:32ā€“44, November 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. L. Jiang et al. Discovery of eight z āˆ¼ 6 quasars in the sloan digital sky survey overlap regions. AJ, 149, 188, May 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. E. BaƱados et al. Discovery of Eight z āˆ¼ 6 Quasars from Pan-STARRS1. AJ, 148:14, July 2014.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  37. C. J. Willott et al. The Canada-France High-z Quasar Survey: Nine new quasars and the luminosity function at redshift 6. AJ, 139:906ā€“918, March 2010.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. C. J. Willott et al. Eddington-limited accretion and the black hole mass function at redshift 6. AJ, 140:546ā€“560, August 2010.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  39. C. J. Willott et al. Six More Quasars at Redshift 6 Discovered by the Canada-France High-z Quasar Survey. AJ, 137:3541ā€“3547, March 2009.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  40. B. P. Venemans et al. Discovery of Three z > 6. 5 Quasars in the VISTA Kilo-Degree Infrared Galaxy (VIKING) Survey. ApJ, 779:24, December 2013.

    Google ScholarĀ 

  41. A. C. Carnall et al. Two bright z > 6 quasars from VST ATLAS and a new method of optical plus mid-infrared colour selection. MNRAS, 451, L16, July 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  42. S. W. Warren et al. Discovery of six redshift 6 quasars in the UKIRT Infrared Deep Sky Survey. A&A, submitted, 2015.

    Google ScholarĀ 

  43. G. D. Becker, J. S. Bolton, P. Madau, M. Pettini, E. V. Ryan-Weber, and B. P. Venemans. Evidence of patchy hydrogen reionization from an extreme LyĪ± trough below redshift six. MNRAS, 447:3402ā€“3419, March 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  44. C. J. Willott, A. Omont, and J. Bergeron. Redshift 6.4 Host Galaxies of 108 Solar Mass Black Holes: Low Star Formation Rate and Dynamical Mass. ApJ, 770:13, June 2013.

    Google ScholarĀ 

  45. L. Jiang et al. A Survey of z āˆ¼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. II. Discovery of Six Quasars at z AB > 21. AJ, 138:305ā€“311, July 2009.

    Google ScholarĀ 

  46. B. P. Venemans et al. First discoveries of z āˆ¼ 6 quasars with the Kilo Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey. MNRAS, 453, 2259, November 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  47. S. L. Reed et al. DES J0454-4448: Discovery of the First Luminous z > 6 Quasar from the Dark Energy Survey. MNRAS, submitted, 2015. (in press)

    Google ScholarĀ 

  48. X. Fan et al. A survey of z > 5. 7 quasars in the Sloan Digital Sky Survey. IV. Discovery of seven additional quasars. AJ, 131:1203ā€“1209, mar 2006.

    Google ScholarĀ 

  49. T. Goto. Discovery of a new high-redshift QSO at z 5.96 with the Subaru Telescope. MNRAS, 371:769ā€“771, September 2006.

    Google ScholarĀ 

  50. X. Fan et al. Quasars ā€¦ AJ, submitted, 2015.

    Google ScholarĀ 

  51. R. Wang et al. Thermal Emission from Warm Dust in the Most Distant Quasars. ApJ, 687:848ā€“858, November 2008.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  52. B. P. Venemans et al. Detection of Atomic Carbon [C II] 158 Ī¼m and Dust Emission from a z 7.1 Quasar Host Galaxy. ApJ, 751:L25, June 2012.

    Google ScholarĀ 

  53. D. J. Mortlock et al. Discovery of a redshift 6.13 quasar in the UKIRT infrared deep sky survey. A&A, 505:97ā€“104, October 2009.

    Google ScholarĀ 

  54. R. Wang et al. Star Formation and Gas Kinematics of Quasar Host Galaxies at z āˆ¼ 6: New Insights from ALMA. ApJ, 773:44, August 2013.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  55. N. Kashikawa et al. The Subaru High-z Quasar Survey: Discovery of Faint z āˆ¼ 6 Quasars. ApJ, 798:28, January 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  56. G. B. Rybicki and I. P. dellā€™Antonio. The time development of a resonance line in the expanding universe. ApJ, 427:603ā€“617, June 1994.

    Google ScholarĀ 

  57. H.-W. Lee. Asymmetric Deviation of the Scattering Cross Section around LyĪ± by Atomic Hydrogen. ApJ, 594:637ā€“641, September 2003.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  58. C. M. Hirata. Wouthuysen-Field coupling strength and application to high-redshift 21-cm radiation. MNRAS, 367:259ā€“274, March 2006.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  59. K. R. Lang. Astrophysical formulae: A compendium for the physicist and astrophysicist. Springer-Verlag, 1974.

    BookĀ  Google ScholarĀ 

  60. E. Alipour, K. Sigurdson, and C. Hirata. The Effects of Rayleigh Scattering on the CMB and Cosmic Structure. PRD, 91, 083520, April 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  61. K. Bach and H.-W. Lee. Accurate LyĪ± scattering cross-section and red damping wing in the reionization epoch. MNRAS, 446:264ā€“273, January 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  62. B. T. Draine. Physics of the Interstellar and Intergalactic Medium. 2011.

    MATHĀ  Google ScholarĀ 

  63. D. J. Mortlock and C. Hirata. The damping wing from neutral hydrogen in the intergalactic medium. MNRAS, submitted, 2015.

    Google ScholarĀ 

  64. J. Miralda-Escude. Reionization of the intergalactic medium and the damping wing of the Gunn-Peterson trough. ApJ, 501:15ā€“22, jul 1998.

    Google ScholarĀ 

  65. V. Weisskopf and E. Wigner. Ɯber die natĆ¼rliche Linienbreite in der Strahlung des harmonischen Oszillators. Zeitschrift fur Physik, 65:18ā€“29, November 1930.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  66. J. Tudor Davies and J. M. Vaughan. A New Tabulation of the Voigt Profile. ApJ, 137:1302, May 1963.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  67. T. Tepper-GarcĆ­a. Voigt profile fitting to quasar absorption lines: an analytic approximation to the Voigt-Hjerting function. MNRAS, 369:2025ā€“2035, July 2006.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  68. M. R. Zaghloul. On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand. MNRAS, 375:1043ā€“1048, March 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  69. J. Schroeder, A. Mesinger, and Z. Haiman. Evidence of Gunn-Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z āˆ¼ 6-7. MNRAS, 428:3058ā€“3071, February 2013.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  70. A. Songaila. The Evolution of the Intergalactic Medium Transmission to Redshift 6. AJ, 127:2598ā€“2603, May 2004.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  71. G. B. Field. The Time Relaxation of a Resonance-Line Profile. ApJ, 129:551, May 1959.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  72. I. S. Shklovskii. Physical Conditions in the Gaseous Envelope of 3c-273. Astron. Zh., 41:801, 1964.

    ADSĀ  Google ScholarĀ 

  73. P. A. G. Scheuer. A Sensitive Test for the Presence of Atomic Hydrogen in Intergalactic Space. Nature, 207:963, August 1965.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  74. J. N. Bahcall and E. E. Salpeter. On the Interaction of Radiation from Distant Sources with the Intervening Medium. ApJ, 142:1677ā€“1680, November 1965.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  75. J. E. Gunn and B. A. Peterson. On the density of neutral hydrogen in intergalactic space. ApJ, 142:1633ā€“1641, nov 1965.

    Google ScholarĀ 

  76. M. Schmidt. Large Redshifts of Five Quasi-Stellar Sources. ApJ, 141:1295, April 1965.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  77. P. Madau. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies. ApJ, 441:18ā€“27, March 1995.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  78. N. Roche, P. Franzetti, B. Garilli, G. Zamorani, A. Cimatti, and E. Rossetti. Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey. MNRAS, 420:1764ā€“1778, February 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  79. N. R. Tanvir et al. A Ī³-ray burst at a redshift of z ā‰ƒ 8.2. Nature, 461:1254ā€“1257, October 2009.

    Google ScholarĀ 

  80. T.-S. Kim, J. S. Bolton, M. Viel, M. G. Haehnelt, and R. F. Carswell. An improved measurement of the flux distribution of the LyĪ± forest in QSO absorption spectra: the effect of continuum fitting, metal contamination and noise properties. MNRAS, 382:1657ā€“1674, December 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  81. K.-G. Lee. Systematic Continuum Errors in the LyĪ± Forest and the Measured Temperature-Density Relation. ApJ, 753:136, July 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  82. R. Cen, J. Miralda-EscudĆ©, J. P. Ostriker, and M. Rauch. Gravitational collapse of small-scale structure as the origin of the Lyman-alpha forest. ApJ, 437:L9ā€“L12, December 1994.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  83. J. K. Webb, X. Barcons, R. F. Carswell, and H. C. Parnell. The Gunn-Peterson effect and the H I column density distribution of Lyman alpha forest clouds at Z 4. MNRAS, 255:319ā€“324, March 1992.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  84. E. Giallongo, S. Dā€™Odorico, A. Fontana, R. G. McMahon, S. Savaglio, S. Cristiani, P. Molaro, and D. Trevese. The Gunn-Peterson effect in the spectrum of the Z 4.7 QSO 1202ā€“0725: The intergalactic medium at very high redshifts. ApJ, 425:L1ā€“L4, April 1994.

    Google ScholarĀ 

  85. A. Songaila, E. M. Hu, L. L. Cowie, and R. G. McMahon. Limits on the Gunn-Peterson Effect at Z 5. ApJ, 525:L5ā€“L8, November 1999.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  86. X. Fan et al. The Discovery of a Luminous Z 5.80 Quasar from the Sloan Digital Sky Survey. AJ, 120:1167ā€“1174, September 2000.

    Google ScholarĀ 

  87. A. Mesinger and Z. Haiman. Constraints on reionization and source properties from the absorption spectra of z > 6. 2 Quasars. ApJ, 660:923ā€“932, May 2007.

    Google ScholarĀ 

  88. A. Mesinger. Was reionization complete by z āˆ¼ 5 āˆ’ 6? MNRAS, 407:1328ā€“1337, September 2010.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  89. R. A. C. Croft. Characterization of Lyman Alpha Spectra and Predictions of Structure Formation Models: A Flux Statistics Approach. In A. V. Olinto, J. A. Frieman, and D. N. Schramm, editors, Eighteenth Texas Symposium on Relativistic Astrophysics, page 664, 1998.

    Google ScholarĀ 

  90. R. Barkana. Did the universe reionize at redshift six? Nature, 7:85ā€“100, March 2002.

    Google ScholarĀ 

  91. A. Songaila and L. L. Cowie. Approaching Reionization: The Evolution of the Ly Ī± Forest from z 4 to z 6. AJ, 123:2183ā€“2196, May 2002.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  92. I. T. Iliev, G. Mellema, U.-L. Pen, H. Merz, P. R. Shapiro, and M. A. Alvarez. Simulating cosmic reionization at large scales - I. The geometry of reionization. MNRAS, 369:1625ā€“1638, July 2006.

    Google ScholarĀ 

  93. S. G. Djorgovski, S. Castro, D. Stern, and A. A. Mahabal. On the Threshold of the Reionization Epoch. ApJ, 560:L5ā€“L8, October 2001.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  94. R. H. Becker et al. Evidence for Reionization at z āˆ¼ 6: Detection of a Gunn-Peterson Trough in a z=6.28 Quasar. AJ, 122:2850ā€“2857, dec 2001.

    Google ScholarĀ 

  95. P. Paschos and M. L. Norman. A Statistical Analysis of Intergalactic Medium Transmission Approaching Reionization. ApJ, 631:59ā€“84, September 2005.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  96. K. Kohler, N. Y. Gnedin, J. Miralda-EscudĆ©, and P. A. Shaver. Redshifted 21 cm Emission from the Pre-Reionization Era. II. H II Regions around Individual Quasars. ApJ, 633:552ā€“559, November 2005.

    Google ScholarĀ 

  97. S. Gallerani, T. R. Choudhury, and A. Ferrara. Constraining the reionization history with QSO absorption spectra. MNRAS, 370:1401ā€“1421, August 2006.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  98. I. D. McGreer, A. Mesinger, and V. Dā€™Odorico. Model-independent evidence in favour of an end to reionization by z > 6. MNRAS, 447:499ā€“505, February 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  99. R. J. Bouwens et al. Lower-luminosity Galaxies Could Reionize the Universe: Very Steep Faint-end Slopes to the UV Luminosity Functions at z > 5 āˆ’ 8 from the HUDF09 WFC3/IR Observations. ApJ, 752:L5, June 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  100. S. L. Finkelstein et al. CANDELS: The Contribution of the Observed Galaxy Population to Cosmic Reionization. ApJ, 758:93, October 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  101. B. Strƶmgren. The Physical State of Interstellar Hydrogen. ApJ, 89:526, May 1939.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  102. Z. Haiman. The Detectability of High-Redshift LyĪ± Emission Lines prior to the Reionization of the Universe. ApJ, 576:L1ā€“L4, September 2002.

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  103. S. R. Furlanetto, A. Sokasian, and L. Hernquist. Observing the reionization epoch through 21-centimetre radiation. MNRAS, 347:187ā€“195, jan 2004.

    Google ScholarĀ 

  104. P. R. Shapiro and M. L. Giroux. Cosmological H II regions and the photoionization of the intergalactic medium. ApJ, 321:L107ā€“L112, October 1987.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  105. P. Madau, F. Haardt, and M. J. Rees. Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources. ApJ, 514:648ā€“659, April 1999.

    Google ScholarĀ 

  106. Q. Yu and Y. Lu. The Strƶmgren Sphere, the Environment, and the Reionization in the Local Universe of the Highest Redshift QSOs. ApJ, 620:31ā€“43, February 2005.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  107. P. Madau and M. J. Rees. The Earliest Luminous Sources and the Damping Wing of the Gunn-Peterson Trough. ApJL, 542:69ā€“73, oct 2000.

    Google ScholarĀ 

  108. R. Cen and Z. Haiman. Quasar Strƶmgren Spheres Before Cosmological Reionization. ApJ, 542:L75ā€“L78, October 2000.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  109. R. Barkana and A. Loeb. In the beginning: the first sources of light and the reionization of the universe. Physics Reports, 349:125ā€“238, July 2001.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  110. J. S. B. Wyithe and A. Loeb. A large neutral fraction of cosmic hydrogen a billion years after the Big Bang. Nature, 427:815ā€“817, February 2004.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  111. J. S. B. Wyithe, A. Loeb, and C. Carilli. Improved constraints on the neutral intergalactic hydrogen surrounding quasars at redshifts z > 6. ApJ, 628:575ā€“582, August 2005.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  112. Z. Haiman and R. Cen. Constraining Reionization with the Evolution of the Luminosity Function of LyĪ± Emitting Galaxies. ApJ, 623:627ā€“631, April 2005.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  113. A. Mesinger and Z. Haiman. Evidence of a cosmological Strƶmgren surface and of significant neutral hydrogen surrounding the quasar SDSS J1030+0524. ApJ, 611:69ā€“72, August 2004.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  114. A. Maselli, S. Gallerani, A. Ferrara, and T. R. Choudhury. On the size of HII regions around high-redshift quasars. MNRAS, 376:L34ā€“L38, March 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  115. A. Maselli, A. Ferrara, and S. Gallerani. Interpreting the transmission windows of distant quasars. MNRAS, 395:1925ā€“1933, June 2009.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  116. J. S. Bolton, M. G. Haehnelt, S. J. Warren, P. C. Hewett, D. J. Mortlock, B. P. Venemans, R. G. McMahon, and C. Simpson. How neutral is the intergalactic medium surrounding the redshift z 7.085 quasar ULAS J1120+0641? MNRAS, 416:L70ā€“L74, September 2011.

    Google ScholarĀ 

  117. S. Bajtlik, R. C. Duncan, and J. P. Ostriker. Quasar ionization of Lyman-alpha clouds - The proximity effect, a probe of the ultraviolet background at high redshift. ApJ, 327:570ā€“583, April 1988.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  118. A. Mesinger, Z. Haiman, and R. Cen. Probing the reionization history using the spectra of high-redshift sources. ApJ, 613:23ā€“35, September 2004.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  119. J. S. Bolton and M. G. Haehnelt. The nature and evolution of the highly ionized near-zones in the absorption spectra of z ā‰ƒ 6 quasars. MNRAS, 374:493ā€“514, January 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  120. P. C. Hewett and V. Wild. Improved redshifts for SDSS quasar spectra. MNRAS, 405:2302ā€“2316, July 2010.

    ADSĀ  Google ScholarĀ 

  121. F. Walter et al. Molecular gas in the host galaxy of a quasar at redshift z 6.42. Nature, 424:406ā€“408, July 2003.

    Google ScholarĀ 

  122. S. Cantalupo, C. Porciani, and S. J. Lilly. Mapping Neutral Hydrogen during Reionization with the LyĪ± Emission from Quasar Ionization Fronts. ApJ, 672:48ā€“58, January 2008.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  123. M. Kissler-Patig et al. HAWK-I: the high-acuity wide-field K-band imager for the ESO Very Large Telescope. A&A, 491:941ā€“950, December 2008.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  124. P. Madau, A. Meiksin, and M. J. Rees. 21 Centimeter Tomography of the Intergalactic Medium at High Redshift. ApJ, 475:429ā€“444, February 1997.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  125. J. Miralda-EscudĆ© and M. J. Rees. Searching for the Earliest Galaxies Using the Gunn-Peterson Trough and the LyĪ± Emission Line. ApJ, 497:21ā€“27, April 1998.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  126. A. Maselli, A. Ferrara, M. Bruscoli, S. Marri, and R. Schneider. The proximity effect around high-redshift galaxies. MNRAS, 350:L21ā€“L25, May 2004.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  127. J. S. B. Wyithe and A. Loeb. Smooth boundaries to cosmological HII regions from galaxy clustering. MNRAS, 374:960ā€“964, January 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  128. J. S. B. Wyithe, J. S. Bolton, and M. G. Haehnelt. Reionization bias in high-redshift quasar near-zones. MNRAS, 383:691ā€“704, January 2008.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  129. R. H. Kramer and Z. Haiman. Probing re-ionization with quasar spectra: the impact of the intrinsic Lyman Ī± emission line shape uncertainty. MNRAS, 400:1493ā€“1511, December 2009.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  130. R. M. Thomas and S. Zaroubi. Time-evolution of ionization and heating around first stars and miniqsos. MNRAS, 384:1080ā€“1096, March 2008.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  131. D. Crociani, A. Mesinger, L. Moscardini, and S. Furlanetto. The distribution of Lyman-limit absorption systems during and after reionization. MNRAS, 411:289ā€“300, February 2011.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  132. Z. Haiman. Cosmology: A smoother end to the dark ages. Nature, 472:47ā€“48, April 2011.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  133. A. Lidz, M. McQuinn, M. Zaldarriaga, L. Hernquist, and S. Dutta. Quasar Proximity Zones and Patchy Reionization. ApJ, 670:39ā€“59, November 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  134. M. McQuinn, A. Lidz, M. Zaldarriaga, L. Hernquist, and S. Dutta. Probing the neutral fraction of the IGM with GRBs during the epoch of reionization. MNRAS, 388:1101ā€“1110, August 2008.

    ADSĀ  Google ScholarĀ 

  135. A. Mesinger and S. R. Furlanetto. LyĪ± damping wing constraints on inhomogeneous reionization. MNRAS, 385:1348ā€“1358, April 2008.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  136. A. Mesinger, A. Aykutalp, E. Vanzella, L. Pentericci, A. Ferrara, and M. Dijkstra. Can the intergalactic medium cause a rapid drop in LyĪ± emission at z > 6? MNRAS, 446:566ā€“577, January 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  137. M. Patel, S. J. Warren, D. J. Mortlock, and J. P. U. Fynbo. The reanalysis of spectra of GRB 080913 to estimate the neutral fraction of the IGM at a redshift of 6.7. A&A, 512:3ā€“?, March 2010.

    Google ScholarĀ 

  138. T. Totani, N. Kawai, G. Kosugi, K. Aoki, T. Yamada, M. Iye, K. Ohta, and T. Hattori. Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z 6.3. PASJ, 58:485ā€“498, jun 2006.

    Google ScholarĀ 

  139. R. Chornock, E. Berger, D. B. Fox, W. Fong, T. Laskar, and K. C. Roth. GRB 140515A at z 6.33: Constraints on the End of Reionization From a Gamma-ray Burst in a Low Hydrogen Column Density Environment. ArXiv e-prints, May 2014.

    Google ScholarĀ 

  140. S. E. I. Bosman and G. D. Becker. Re-examining the case for neutral gas near the redshift 7 quasar ulas j1120+0641. MNRAS, 452, 1105.

    Google ScholarĀ 

  141. R. A. Simcoe, P. W. Sullivan, K. L. Cooksey, M. M. Kao, M. S. Matejek, and A. J. Burgasser. Extremely metal-poor gas at a redshift of 7. Nature, 492:79ā€“82, December 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  142. K. Finlator, J. A. MuƱoz, B. D. Oppenheimer, S. P. Oh, F. Ɩzel, and R. DavĆ©. The host haloes of O I absorbers in the reionization epoch. MNRAS, 436:1818ā€“1835, December 2013.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  143. The Dark Energy Survey Collaboration. The Dark Energy Survey. ArXiv Astrophysics e-prints, October 2005.

    Google ScholarĀ 

  144. Ž. Ivezić et al. Large Synoptic Survey Telescope: From Science Drivers To Reference Design. Serbian Astronomical Journal, 176:1ā€“13, June 2008.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  145. R. Laureijs et al. Euclid Definition Study Report. ArXiv e-prints, October 2011.

    Google ScholarĀ 

  146. J. S. B. Wyithe, A. Loeb, and D. G. Barnes. Prospects for Redshifted 21 cm Observations of Quasar H II Regions. ApJ, 634:715ā€“727, November 2005.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  147. M. A. Alvarez and T. Abel. Quasar HII regions during cosmic reionization. MNRAS, 380:L30ā€“L34, September 2007.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  148. S. Wyithe, P. M. Geil, and H. Kim. Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA. ArXiv e-prints, January 2015.

    Google ScholarĀ 

  149. B. Greig, J. S. Bolton, and J. S. B. Wyithe. Fast, large-volume, GPU-enabled simulations for the Ly Ī± forest: power spectrum forecasts for baryon acoustic oscillation experiments. MNRAS, 418:1980ā€“1993, December 2011.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  150. A. Mesinger, S. Furlanetto, and R. Cen. 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. MNRAS, 411:955ā€“972, February 2011.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  151. S. Cantalupo and C. Porciani. RADAMESH: cosmological radiative transfer for Adaptive Mesh Refinement simulations. MNRAS, 411:1678ā€“1694, March 2011.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  152. I. T. Iliev, G. Mellema, K. Ahn, P. R. Shapiro, Y. Mao, and U.-L. Pen. Simulating cosmic reionization: how large a volume is large enough? MNRAS, 439:725ā€“743, March 2014.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  153. B. Greig and A. Mesinger. 21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21 cm signal. MNRAS, 449:4246ā€“4263, June 2015.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  154. S. TavarĆ©, D. Balding, R. Griffith, and P. Donnelly. Inferring coalescence times from DNA sequence data. Genetic, 145:505ā€“518, 1997.

    Google ScholarĀ 

  155. J. Pritchard, M. Seielstad, Perez-Lezaun, and M. A. Feldman. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Bio. and Evol., 16:1791ā€“1798, 1999.

    Google ScholarĀ 

  156. E. Cameron and A. N. Pettitt. Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift. MNRAS, 425:44ā€“65, September 2012.

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Acknowledgements

Thanks to Xiahoui Fan, Zoltan Haiman, Chris Hirata, Linhau Jiang, Leon Lucy, Andrei Mesinger, Subu Mohanty, Ashara Peiris, Andrew Pontzen, Steve Warren and Chris Willott for useful discussions about quasars, reionization and the rich physics of the hydrogen atom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mortlock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mortlock, D. (2016). Quasars as Probes of Cosmological Reionization. In: Mesinger, A. (eds) Understanding the Epoch of Cosmic Reionization. Astrophysics and Space Science Library, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-319-21957-8_7

Download citation

Publish with us

Policies and ethics