Skip to main content

Probing Proton Transfer Reactions in Molecular Dynamics—A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 21))

Abstract

The classical modeling of proton transfer reactions in chemical simulations requires the application of reactive force field formulations. A common feature of these dissociative potential models of aqueous systems is the possibility to transfer protons between water, oxonium and hydroxide ions. Since molecules undergo a change of their composition as the simulation progresses, the respective topology defining which atoms form a molecular unit at a given configuration becomes time-dependent. Knowledge of this variable topology is a key prerequisite to apply dissociative models in the framework of hybrid quantum mechanical/molecular mechanical (QM/MM) simulation studies. In order to effectively execute QM/MM simulations, the simulation software has to be able to independently monitor all occurring bond formation and cleavage events and automatically adjust the respective topology information, thereby discriminating between short-time fluctuations and sustained proton transfer events. The properties of a simple yet effective automated topology update criterion developed for excess protons are presented and its performance for hydroxide containing solutions and systems containing excess protons is compared. Furthermore, the influence of deuteration of the different systems is discussed. The data clearly demonstrates that it is possible to apply a global setting for the automated topology update of both proton and proton-hole migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CPMD:

Car--Parrinello molecular dynamics

DFT:

Density functional theory

QM:

Quantum mechanical

MM:

Molecular mechanical

QM/MM:

Quantum mechanical/molecular mechanical

MD:

Molecular dynamics

PT:

Proton transfer

MS-EVB:

Multistate empirical valence bond

HPC:

High-performance computing

ATU:

Automated topology update

PTM:

Proton transfer maps

PH:

Proton-hole

NQE:

Nuclear quantum effects

sOSS2:

Scaled Ojamäe-Shavitt-Singer

PIMD:

Path-integral molecular dynamics

References

  1. Allen MP, Tildesley DJ (1990) Computer simulation of liquids. Oxford Science Publications, Oxford

    Google Scholar 

  2. Amara P, Field MJ (2003) Evaluation of an ab initio quantum mechancial/molecular mechanical hybrid-potential link-atom method. Theor Chem Acc 109:43

    Article  CAS  Google Scholar 

  3. Anglada JM, Martins-Costa M, Ruiz-López MF, Francisco JS (2014) Spectroscopic signatures of ozone at the airwater interface and photochemistry implications. Proc Natl Acad Sci USA 111:11, 618

    Google Scholar 

  4. Assfeld X, Rivail J (1996) Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem Phys Lett 263:100

    Article  CAS  Google Scholar 

  5. Bakowies D, Thiel W (1996) Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem 100(25):10, 580

    Google Scholar 

  6. Bao J, Feng X, Yu J (2011) GPU triggered revolution in computational chemistry. Acta Phys Chim Sin 27(9):2019

    Google Scholar 

  7. Bhattacharjee A, Weiss AKH, Artero V, Field MJ, Hofer TS (2014) Electronic structure and hydration of tetramine cobalt hydride complexes. J Phys Chem B 118:5551

    Article  CAS  Google Scholar 

  8. Billeter SR, van Gunsteren WF (1997) A modular molecular dynamics/quantum dynamics program for non-adiabatic proton transfers in solution. Comp Phys Commun 107:61

    Article  CAS  Google Scholar 

  9. Billeter SR, van Gunsteren WF (1998) Protonizable water model for quantum dynamical simulations. J Phys Chem A 102:4669

    Article  CAS  Google Scholar 

  10. Borgis D, Hynes JT (1991) Molecular dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J Chem Phys 350:3619

    Article  Google Scholar 

  11. Borgis D, Hynes JT (1993) Dynamical theory of proton tunneling transfer rates in solution: general formulation. Chem Phys 170:315

    Article  CAS  Google Scholar 

  12. Braams BJ, Manolopoulos DE (2006) On the short-time limit of ring polymer molecular dynamics. J Chem Phys 125:124, 105

    Google Scholar 

  13. Brancato G, Tuckerman ME (2005) A polarizable multistate empirical valence bond model for proton transport in aqueous solution. J Chem Phys 122:224, 507

    Google Scholar 

  14. Buehler MJ, van Duin ACT, Goddard WA III (2006) Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys Rev Lett 96:095, 505

    Google Scholar 

  15. Canaval LR, Lutz OM, Weiss AKH, Huck CW, Hofer TS (2014) Electronic structure and hydration of tetramine cobalt hydride complexes. Inorg Chem 53:11, 861

    Google Scholar 

  16. Cao J, Voth GA (1994a) The formulation of quantum statistical mechanics based on the feynman path centroid density. i. equilibrium properties. J Chem Phys 100:5093

    Google Scholar 

  17. Cao J, Voth GA (1994b) The formulation of quantum statistical mechanics based on the feynman path centroid density. ii. dynamical properties. J Chem Phys 100:5106

    Google Scholar 

  18. Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density functional theory. Phys Rev Lett 55(22):2471

    Article  CAS  Google Scholar 

  19. Ceriotti M (2010) A novel framework for enhanced molecular dynamics based on the generalized langevin equation. PhD thesis, Swiss Federal Institute of Technology, Zürich, Switzerland

    Google Scholar 

  20. Ceriotti M, Bussi G, Parrinello M (2011) Accelerating the convergence of path integral dynamics with a generalized langevin equation. J Chem Phys 134:084, 104

    Google Scholar 

  21. Cook DB (2005) Handbook of computational chemistry. Dover Publications, New York

    Google Scholar 

  22. Craig IR, Manolopoulos DE (2004a) Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics. J Chem Phys 121:3368

    Google Scholar 

  23. Craig IR, Manolopoulos DE (2004b) Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J Chem Phys 121:3368

    Google Scholar 

  24. Cramer CJ (2002) Essentials of computational chemistry. Wiley, West Sussex

    Google Scholar 

  25. de Grotthuss CJT (1806) Mémoire–sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide the l’électricité galvanique. Ann Chim (Paris) LVIII:54

    Google Scholar 

  26. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396

    Article  Google Scholar 

  27. Feynman RP, Hibbs AR, Styer DF (2010) Quantum mechanics and path integrals, Emended edn. Dover Publications, New York

    Google Scholar 

  28. Field MJ, Bash PA, Karplus M (1990a) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11(6):700

    Google Scholar 

  29. Field MJ, Bash PA, Karplus M (1990b) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11(6):700

    Google Scholar 

  30. Frenkel D, Smit B (2002) Understanding Molecular Simulation. Academic press, San Diego – London

    Google Scholar 

  31. Gao J (1993) Potential of mean force for the isomerization of dmf in aqueous solution: a monte carlo QM/MM simulation study. J Am Chem Soc 115:2930

    Article  CAS  Google Scholar 

  32. Gao J (1996) Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc Chem Res 29:298

    Article  CAS  Google Scholar 

  33. Gao J, Amara P, Alhambra C, Field MJ (1998) A generalized hybrid orbital (gho) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102(24):4714

    Article  CAS  Google Scholar 

  34. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, Chichester

    Book  Google Scholar 

  35. Hockney RW, Eastwood JW (1989) Computer simulation using particles. Taylor & Francis, New York

    Google Scholar 

  36. Hofer TS (2014) Perspectives for hybrid ab initio/molecular mechanical simulations of solutions: from complex chemistry to proton-transfer reactions and interfaces. Pure & Appl Chem 86:105

    Article  CAS  Google Scholar 

  37. Hofer TS, Pribil AB, Randolf BR, Rode BM (2010a) Ab initio quantum mechanical charge field molecular dynamics: A nonparametrized first-principle approach to liquids and solutions. Adv Quant Chem 59:213

    Google Scholar 

  38. Hofer TS, Rode BM, Pribil AB, Randolf BR (2010b) Simulations of liquids and solutions based on quantum mechanical forces. Adv Inorg Chem 62:143

    Google Scholar 

  39. Hofer TS, Weiss AKH, Randolf BR, Rode BM (2011) Hydration of highly charged ions. Chem Phys Lett 512(4–6):139. doi:10.1016/j.cplett.2011.05.060

    Article  CAS  Google Scholar 

  40. Hofer TS, Hitzenberger M, Randolf BR (2012) Combining a dissociative water model with a hybrid QM/MM approach—a simulation strategy for the study of proton transfer reactions in solution. J Chem Theory Comput 8:3586

    Article  CAS  Google Scholar 

  41. Hofmann DW, Kuleshova L, DAguanno B (2007) A new reactive potential for the molecular dynamics simulation of liquid water. Chem Phys Lett 448(13):138

    Article  CAS  Google Scholar 

  42. Hoover WG (1983) Nonequilibrium molecular dynamics. Annu Rev Phys Chem 34:103

    Article  CAS  Google Scholar 

  43. Ihrig AC, Schiffmann C, Sebastiani D (2011) Specific quantum mechanical/molecular mechanical capping-potentials for biomolecular functional groups. J Chem Phys 135:214, 107

    Google Scholar 

  44. Jang S, Voth GA (1999) A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables. J Chem Phys 111:2371

    Article  CAS  Google Scholar 

  45. Jensen F (2006) Introduction to computational chemistry, 2nd edn. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  46. Kerdcharoen T, Morokuma K (2002) Oniom-xs: an extension of the oniom method for molecular simulation in condensed phase. Chem Phys Lett 335:257

    Article  Google Scholar 

  47. Knight C, Voth GA (2012) The curious case of the hydrated proton. Acc Chem Res 45:101

    Article  CAS  Google Scholar 

  48. Koch W, Holthausen MC (2002) A chemist’s guide to density functional theory, 2nd Edn. Wiley–VCH, Weinheim

    Google Scholar 

  49. Leach AR (2001) Molecular modelling, 2nd edn. Prentice-Hall, Essex

    Google Scholar 

  50. Lee SH, Rasaiah JC (2011) Proton transfer and the mobilities of the H+ and OH ions from studies of a dissociating model for water. J Chem Phys 135:124, 505

    Google Scholar 

  51. Liang T, Shin YK, Cheng Y, Yilmaz DE, Vishnu KG, Verners O, Zou C, Phillpot SR, Sinnott SB, van Duin AC (2013) Reactive potentials for advanced atomistic simulations. Ann Rev Mater Res 43:109

    Article  CAS  Google Scholar 

  52. Light TS, Licht S, Bevilacqua AC, Morash KR (2008) Reactive potentials for advanced atomistic simulations. Electrochem Solid State Lett 8:E16

    Article  Google Scholar 

  53. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117:185

    Article  CAS  Google Scholar 

  54. Lockwood GK, Garofalini SH (2013) Lifetimes of excess protons in water using a dissociative water potential. J Phys Chem B 117:4089

    Article  CAS  Google Scholar 

  55. Lutz OMD, Messner CB, Hofer TS, Glätzle M, Huck CW, Bonn GK, Rode BM (2013) Combined ab initio computational and infrared spectroscopic study of the cis- and trans-bis(glycinato)copper(ii) complexes in aqueous environment. J Phys Chem Lett 4:1502

    Article  CAS  Google Scholar 

  56. Luz Z, Meiboom S (1964) The activation energies of proton transfer reactions in water. J Am Chem Soc 86:4768

    Article  CAS  Google Scholar 

  57. Mahadevan TS, Garofalini SH (2007) Dissociative water potential for molecular dynamics simulations. J Phys Chem B 111:8919

    Article  CAS  Google Scholar 

  58. Mahadevan TS, Garofalini SH (2009) Dissociative chemisorption of water onto silica surfaces and formation of hydronium ions. J Phys Chem C 112:1507

    Article  Google Scholar 

  59. Marx D (2006) Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. Chem Phys Chem 7:1848

    CAS  Google Scholar 

  60. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) The nature of the hydrated excess proton in water. Nature 397:601

    Article  CAS  Google Scholar 

  61. McQuarrie DA (1976) Statistical mechanics. Harper & Row, New York

    Google Scholar 

  62. Messner CB, Bonn GK, Hofer TS (2015) QM/MM md simulations of la(iii)-phosphopeptide complexes. Mol BioSyst 11:232

    Article  CAS  Google Scholar 

  63. Moin S, Hofer TS (2014) Hydration of porphyrin and mg-porphyrin: ab initio quantum mechanical charge field molecular dynamics simulations. Mol BioSyst 10:117

    Article  CAS  Google Scholar 

  64. Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81:511

    Article  CAS  Google Scholar 

  65. Ojamäe L, Shavitt I, Singer S (1998) Potential models for simulations of the solvated proton in water. J Chem Phys 109(13):5547. doi:10.1063/1.477173

    Article  Google Scholar 

  66. Park K, Lin W, Paesani F (2012) A refined MS-EVB model for proton transport in aqueous environments. J Phys Chem B 116:343

    Article  CAS  Google Scholar 

  67. Parrinello M, Rahman A (1984) Study of an F center in molten kcl. J Chem Phys 80:860

    Article  CAS  Google Scholar 

  68. Penrose O (2005) Foundations of statistical mechanics: a deductive treatment. Dover Publications, New York

    Google Scholar 

  69. Philipp D, Friesner RA (1999) Mixed ab initio qm/mm modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. J Comput Chem 20(14):1468

    Article  CAS  Google Scholar 

  70. Pines E, Huppert D, Agmon N (1988) Geminate recombination in excited-state proton-transfer reactions—numerical solution of the debye-smoluchowski equation with backreaction and comparison with experimental results. J Chem Phys 88:5620

    Article  CAS  Google Scholar 

  71. Rahman A, Stillinger FH, Lemberg HL (1975) Study of a central force model for liquid water by molecular dynamics. J Chem Phys 63:5223

    Article  CAS  Google Scholar 

  72. Ramachandran KI, Deepa G, Namboori K (2008) Computational chemistry and molecular modeling: principles and applications. Springer, Berlin

    Google Scholar 

  73. Roberts NK, Northey HL (1974) Proton and deuteron mobility in normal and heavy water solutions of electrolytes. J Chem Soc Faraday Trans 70:253

    Article  CAS  Google Scholar 

  74. Rode BM, Schwenk CF, Hofer TS, Randolf BR (2005) The combination of quantum chemistry and statistical simulations: a most powerful tool to access structure and dynamics of liquid systems. Coord Chem Rev 249:2993

    Article  CAS  Google Scholar 

  75. Rode BM, Hofer TS, Randolf BR, Schwenk CF, Xenides D, Vchirawongkwin V (2006) Ab initio quantum mechanical charge field molecular dynamics—a qm/mm md procedure for accurate simulations of ions and complexes. Theor Chem Acc 115:77bbl

    Google Scholar 

  76. Sadus RJ (1999) Molecular simulation of fluids: theory, algorithms, and object-orientation. Elsevier, Amsterdam

    Google Scholar 

  77. Sagnella DE, Tuckerman ME (1998) An empirical bvalence bond model for proton transfer in water. J Chem Phys 108:2072

    Article  Google Scholar 

  78. Schmitt UW, Voth GA (1998) Multistate-empirical valence bond model for proton transport in water. J Phys Chem B 102:5547

    Article  CAS  Google Scholar 

  79. Schwabl F (2010) Statistical mechanics, 2nd edn. Springer, Berlin

    Google Scholar 

  80. Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem Biol 11:182

    Article  CAS  Google Scholar 

  81. Sholl DS, Steckel JA (2009) Density functional theory—a practical introduction. Wiley, Hoboken

    Book  Google Scholar 

  82. Staib A, Borgis D (1995) Molecular dynamics simulation of an excess charge in water using mobile gaussian orbitals. J Chem Phys 103:2642

    Article  CAS  Google Scholar 

  83. Stillinger FH (1975) Theory and molecular models for water. Adv Chem Phys 31:1

    CAS  Google Scholar 

  84. Stillinger FH, Rahman A (1978) Revised central force potentials for water. J Chem Phys 68:666

    Article  CAS  Google Scholar 

  85. Strnad M, Martins-Costa MTC, Millot C, Tuñón I, Ruiz-López MF, Rivail JL (1997) Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. ii. Charge separation processes. J Chem Phys 106:3643

    Article  CAS  Google Scholar 

  86. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover Publications, New York

    Google Scholar 

  87. Thèry V, Rinaldi D, Rivail J, Maigret B, Ferenczy GG (1994) Quantum mechanical computations on very large molecular systems: The local self-consistent field method. J Comput Chem 15:269

    Article  Google Scholar 

  88. Tirler AO, Hofer TS (2014) Structure and dynamics of the uranyl tricarbonate complex in aqueous solution: Insights from quantum mechanical charge field molecular dynamics. J Phys Chem B 118:12, 938

    Google Scholar 

  89. Tuckerman M, Laasonen K, Sprik M, Parrinello M (1995) Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J Chem Phys 103:150

    Article  CAS  Google Scholar 

  90. Tuckerman M, Marx D, Klein M, Parrinello M (1997) On the quantum nature of the shared proton in hydrogen bonds. Science 275:817

    Article  CAS  Google Scholar 

  91. Tuckerman ME (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, New York

    Google Scholar 

  92. Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF (1995) Coupled density functional/molecular mechanics monte carlo simulations of ions in water. The bromide ion. Chem Phys Lett 241:450

    Article  Google Scholar 

  93. Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF, Rivail JL (1996) A coupled density functional-molecular mechanics monte carlo simulation method: the water molecule in liquid water. J Comput Chem 17:19

    Article  Google Scholar 

  94. Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF (1997) Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. i. proton transfer in strongly H-bonded complexes. J Chem Phys 106:3633

    Article  Google Scholar 

  95. Čuma M, Schmitt UW, Voth GA (2001) A multi-state empirical valence bond model for weak acid dissociation in aqueous solution. J Phys Chem A 105:2814

    Article  Google Scholar 

  96. Ufimtsev IS, Martinez TJ (2008a) Graphical processing units for quantum chemistry. Comput Sci Eng 10:26

    Google Scholar 

  97. Ufimtsev IS, Martinez TJ (2008b) Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. J Chem Theory Comput 4:222

    Google Scholar 

  98. Ufimtsev IS, Martinez TJ (2009a) Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. J Chem Theory Comput 5:1004

    Google Scholar 

  99. Ufimtsev IS, Martinez TJ (2009b) Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput 5:2619

    Google Scholar 

  100. Ufimtsev IS, Kalinichev AG, Todd MJ, Kirkpatrick RJ (2009) A multistate empirical valence bond model for solvation and transport simulations of OH in aqueous solutions. Phys Chem Chem Phys 11:9420

    Article  CAS  Google Scholar 

  101. Vuilleumier R, Borgis D (1999) Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J Chem Phys 111:4251

    Article  CAS  Google Scholar 

  102. Vuilleumier R, Borgis D (2012) Proton conduction: hopping along hydrogen bonds. Nat Chem 4:432

    Article  CAS  Google Scholar 

  103. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbenium ion in the reaction of lysozyme. J Mol Biol 103:227

    Article  CAS  Google Scholar 

  104. Warshel A, Weiss RM (1980) An empirical valence bond approach for comparing reactions in solutions and in enzymes. J Am Chem Soc 102:6218

    Article  CAS  Google Scholar 

  105. Watson M, Olivares-Amaya R, Edgar RG, Aspuru-Guzik A (2010) Accelerating correlated quantum chemistry calculations using graphical processing units. Comput Sci Eng 12:40

    Article  CAS  Google Scholar 

  106. Webb MB, Garofalini SH, Scherer GW (2009) Use of a dissociative potential to simulate hydration of na+ and cl ions. J Phys Chem B 113:9886

    Article  CAS  Google Scholar 

  107. Weiss AK, Hofer TS (2012) Exploiting the capabilities of quantum chemical simulations to characterise the hydration of molecular compounds. RSC Adv 3:1606

    Article  Google Scholar 

  108. Wolf DPK, Phillpot S, Eggebrecht J (1999) Exact method for the simulation of coulombic systems by spherically turncated pairwise r summation. J Chem Phys 110(17):8254

    Article  CAS  Google Scholar 

  109. Wolf M, Groenhof G (2014) Explicit proton transfer in classical molecular dynamics simualtions. J Comput Chem 35:657

    Article  CAS  Google Scholar 

  110. Wraight CA (2006) Chance and design–proton transfer in water, channels and bioenergetic proteins. Biochim Biophys Acta 1757:886

    Article  CAS  Google Scholar 

  111. Wu Y, Chen H, Wang F, Paesani F, Voth GA (2008) An improved multistate empirical valence bond model for aqueous proton solvation and transport. J Phys Chem B 112:467

    Article  CAS  Google Scholar 

  112. Zhang Y, Lee T, Yang W (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110(46)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Ministry of Science BMWF as part of the Konjunkturpaket II of the Focal Point Scientific Computing at the University of Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Hofer .

Editor information

Editors and Affiliations

Appendix: Simulation Protocol

Appendix: Simulation Protocol

Starting structures for all simulations have been prepared by pre–equilibration of a number of simulations systems with an adequate number of water molecules employing periodic, cubic simulation cells for 100 000 MD steps. The velocity-Verlet algorithm has been employed to integrate the equations of motion with a time step of 0.2 fs. The Nose Hoover thermostat [42, 64] was employed to maintain constant temperature of 298.15 K. To account for long-range Coulombic interactions, the Wolf summation technique [108] with a cutoff distance of 10.0 Å was applied as defined in the Garofalini model [57, 106]. The proton transfer update criterion \(\rho\) was set to the recommended value of 0.585 [40].

Next, random water molecules have been adjusted to form H3O+ and OH ions or have been replaced by Na+ and Cl ions as required. 1 M HCl and NaOH systems have been generated by replacing random water molecules with Na+ or Cl and by adding/deleting hydrogen atoms to/from another randomly chosen water molecule, yielding net stochiometries of 17 HCl and 18 NaOH molecules per 1000 water molecules. For deuterated systems each hydrogen atoms was replaced by deuterium.

The solutions have then been equilibrated for at least 1 000 000 MD steps (200 ps). Data sampling has been performed for 1 500 000 and 2 500 000 MD steps in case of acidified and basic systems, respectively, corresponding to sampling times of 300 and 500 ps. To tightly monitor all occurring proton transfer events data sampling was performed every tenth MD step, leading to trajectory file sizes of approximately 60–110 GB per system, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hofer, T.S. (2015). Probing Proton Transfer Reactions in Molecular Dynamics—A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_4

Download citation

Publish with us

Policies and ethics