Skip to main content

Exploring Chemical Reactivity in Enzyme Catalyzed Processes Using QM/MM Methods: An Application to Dihydrofolate Reductase

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Abstract

Enzymes are the catalysts used by living organisms to accelerate chemical processes under physiological conditions. In this chapter, we illustrate the current view about the origin of their extraordinary rate enhancement based on molecular simulations and, in particular, on methods based on the combination of Quantum Mechanics and Molecular Mechanics potentials which provide a solution to treat the chemical reactivity of these large and complex molecular systems. Computational studies on Dihydrofolate Reductase have been selected as a conductor wire to present the evolution and difficulties to model chemical reactivity in enzymes. The results discussed here show that experimental observations can be currently understood within the framework of Transition State Theory provided that the adequate simulations are carried out. Protein dynamics, quantum tunnelling effects and conformational diversity are essential ingredients to explain the complex behaviour of these amazing molecular machineries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D-PMF:

Two dimensional potential of mean force

AM1:

Austin model 1

AM1-SRP:

Austin model 1—specific reaction parameters

BsDHFR:

Geobacillus stearothermophilus Dihydrofolate Reductase

DAD:

Donor acceptor distance

DFT:

Density futctional Theory

DHF:

7,8-dihydrofolate

DHFR:

Dihydrofolate Reductase

EA-VTST:

Ensemble-averaged variational transition state theory

EcDHFR:

Escherichia Coli Dihydrofolate Reductase

Eelec :

Electronic energy

EVB:

Empirical valence bond

FEP:

Free energy perturbation

GHO:

Generalized hybrid orbital

IRC:

Intrinsic reaction coordinate

KIE:

Kinetic isotope effect

LDH:

Lactate Dihydrogenase

LSCF:

Local self-consistent field

MD:

Molecular dynamics

MM:

Molecular mechanics

NADPH:

Nicotinamide adenine dinucleotide phosphate

PES:

Potential energy surface

PM3:

Parameterized model 3

PMF:

Potential of mean force

PS:

Product state

QM:

Quantum mechanics

QM-FEP:

Quantum mechanics free energy perturbation

QM/MM:

Quantum mechanical/molecular mechanics

RS:

Reactant state

THF:

5,6,7,8-tetrahydrofolate

TS:

Transition state

TST:

Transition state theory

V:

Potential energy

Vnn :

Nuclear repulsion energy

WHAM:

Weighted histogram analysis method

References

  1. Kaplan J, DeGrado WF (2004) De novo design of catalytic proteins. Proc Natl Acad Sci USA 101(32):11566–11570

    Article  CAS  Google Scholar 

  2. Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–194

    Article  CAS  Google Scholar 

  3. Frushicheva MP, Cao J, Chu ZT, Warshel A (2010) Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase. Proc Natl Acad Sci USA 107(39):16869–16874

    Article  CAS  Google Scholar 

  4. Nanda V, Koder RL (2010) Designing artificial enzymes by intuition and computation. Nature chemistry 2(1):15–24

    Article  CAS  Google Scholar 

  5. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301(5637):1196–1202

    Article  CAS  Google Scholar 

  6. García-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303(5655):186–195

    Article  CAS  Google Scholar 

  7. Martí S, Roca M, Andrés J, Moliner V, Silla E, Tuñón I, Bertran J (2004) Theoretical insights in enzyme catalysis. Chem Soc Rev 33(2):98–107

    Article  CAS  Google Scholar 

  8. Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106(8):3210–3235

    Article  CAS  Google Scholar 

  9. Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News Arch 24(10):1375–1377

    Article  CAS  Google Scholar 

  10. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450(7171):913–916

    Article  CAS  Google Scholar 

  11. Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50(48):10422–10430

    Article  CAS  Google Scholar 

  12. Glowacki DR, Harvey JN, Mulholland AJ (2012) Taking Ockham’s razor to enzyme dynamics and catalysis. Nature chemistry 4(3):169–176

    Article  CAS  Google Scholar 

  13. Francis K, Kohen A (2014) Protein motions and the activation of the C-H bond catalyzed by dihydrofolate reductase. Curr Opin Chem Biol 21:19–24

    Article  CAS  Google Scholar 

  14. Lu HP (2014) Sizing up single-molecule enzymatic conformational dynamics. Chem Soc Rev 43(4):1118–1143

    Article  CAS  Google Scholar 

  15. Turner AJ, Moliner V, Williams IH (1999) Transition-state structural refinement with GRACE and CHARMM: flexible QM/MM modelling for lactate dehydrogenase. Phys Chem Chem Phys 1(6):1323–1331

    Article  CAS  Google Scholar 

  16. Ferrer S, Tuñón I, Martí S, Moliner V, García-Viloca M, González-Lafont A, Lluch JM (2006) A theoretical analysis of rate constants and kinetic isotope effects corresponding to different reactant valleys in lactate dehydrogenase. J Am Chem Soc 128(51):16851–16863

    Article  CAS  Google Scholar 

  17. Pu JZ, Gao JL, Truhlar DG (2006) Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 106(8):3140–3169

    Article  CAS  Google Scholar 

  18. Pisliakov AV, Cao J, Kamerlin SCL, Warshel A (2009) Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc Natl Acad Sci USA 106(41):17359–17364

    Article  CAS  Google Scholar 

  19. Kanaan N, Ferrer S, Martí S, García-Viloca M, Kohen A, Moliner V (2011) Temperature dependence of the kinetic isotope effects in thymidylate synthase. A theoretical study. J Am Chem Soc 133(17):6692–6702

    Article  CAS  Google Scholar 

  20. Swiderek K, Tuñón I, Moliner V (2014) Predicting enzymatic reactivity: from theory to design. Wires Comput Mol Sci 4(5):407–421

    Article  CAS  Google Scholar 

  21. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions—dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol 103(2):227–249

    Article  CAS  Google Scholar 

  22. Field MJ, Bash PA, Karplus M (1990) A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J Comput Chem 11(6):700–733

    Article  CAS  Google Scholar 

  23. Blakley RL, Benkovic SJ, Whitehead VM (1984) Folates and pterins. Wiley, New York

    Google Scholar 

  24. Fierke CA, Johnson KA, Benkovic SJ (1987) Construction and evaluation of the kinetic scheme associated with dihydrofolate-reductase from Escherichia-Coli. Biochemistry 26(13):4085–4092

    Article  CAS  Google Scholar 

  25. Jurnak FA, McPherson A (1984) Biological macromolecules and assemblies. Wiley, New York

    Google Scholar 

  26. Cummins PL, Ramnarayan K, Singh UC, Gready JE (1991) Molecular-dynamics free-energy perturbation study on the relative affinities of the binding of reduced and oxidized nadp to dihydrofolate-reductase. J Am Chem Soc 113(22):8247–8256

    Article  CAS  Google Scholar 

  27. Warshel A, Weiss RM (1980) An empirical valence bond approach for comparing reactions in solutions and in enzymes. J Am Chem Soc 102(20):6218–6226

    Article  CAS  Google Scholar 

  28. Aqvist J, Warshel A (1993) Simulation of enzyme-reactions using valence-bond force-fields and other hybrid quantum-classical approaches. Chem Rev 93(7):2523–2544

    Article  Google Scholar 

  29. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409

    Article  CAS  Google Scholar 

  30. Andrés J, Safont VS, Martins JBL, Beltran A, Moliner V (1995) AM1 and PM3 transition structure for the hydride transfer—a model of reaction catalyzed by dihydrofolate-reductase. Theochem-J Mol Struc 330:411–416

    Article  Google Scholar 

  31. Andrés J, Moliner V, Safont VS, Domingo LR, Picher MT, Krechl J (1996) On transition structures for hydride transfer step: a theoretical study of the reaction catalyzed by dihydrofolate reductase enzyme. Bioorg Chem 24(1):10–18

    Article  Google Scholar 

  32. Wu YD, Houk KN (1987) Theoretical transition structures for hydride transfer to methyleniminium ion from methylamine and dihydropyridine—on the nonlinearity of hydride transfers. J Am Chem Soc 109(7):2226–2227

    Article  CAS  Google Scholar 

  33. Wu YD, Houk KN (1987) Transition structures for hydride transfers. J Am Chem Soc 109(3):906–908

    Article  CAS  Google Scholar 

  34. Tapia O, Cárdenas R, Andrés J, Colonnacesari F (1988) Transition structure for hydride transfer to pyridinium cation from methanolate—modeling of ladh catalyzed reaction. J Am Chem Soc 110(12):4046–4047

    Article  CAS  Google Scholar 

  35. Wu YD, Houk KN (1991) Theoretical evaluation of conformational preferences of Nad+ and Nadh—an approach to understanding the stereospecificity of Nad+Nadh-dependent dehydrogenases. J Am Chem Soc 113(7):2353–2358

    Article  CAS  Google Scholar 

  36. Almarsson O, Karaman R, Bruice TC (1992) Kinetic importance of conformations of nicotinamide adenine-dinucleotide in the reactions of dehydrogenase enzymes. J Am Chem Soc 114(22):8702–8704

    Article  CAS  Google Scholar 

  37. Almarsson O, Bruice TC (1993) Evaluation of the factors influencing reactivity and stereospecificity in NADPH dependent dehydrogenase enzymes. J Am Chem Soc 115(6):2125–2138

    Article  CAS  Google Scholar 

  38. Houk KN, González J, Li Y (1995) Pericyclic reaction transition-states—passions and punctilios, 1935–1995. Acc Chem Res 28(2):81–90

    Article  CAS  Google Scholar 

  39. Himo F, Siegbahn PEM (2003) Quantum chemical studies of radical-containing enzymes. Chem Rev 103(6):2421–2456

    Article  CAS  Google Scholar 

  40. Siegbahn PEM, Himo F (2009) Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14(5):643–651

    Article  CAS  Google Scholar 

  41. Siegbahn PEM, Himo F (2011) The quantum chemical cluster approach for modeling enzyme reactions. Wires Comput Mol Sci 1(3):323–336

    Article  CAS  Google Scholar 

  42. Lind MES, Himo F (2014) Theoretical study of reaction mechanism and stereoselectivity of arylmalonate decarboxylase. Acs Catal 4(11):4153–4160

    Article  CAS  Google Scholar 

  43. de la Lande A, Gerard H, Moliner V, Izzet G, Reinaud O, Parisel O (2006) Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O-2, CO or CH3CN. J Biol Inorg Chem 11(5):593–608

    Article  CAS  Google Scholar 

  44. de la Lande A, Parisel O, Gerard H, Moliner V, Reinaud O (2008) Theoretical exploration of the oxidative properties of a [(tren(Me1))CuO2]+adduct relevant to copper monooxygenase enzymes: insights into competitive dehydrogenation versus hydroxylation reaction pathways. Chem-Eur J 14(21):6465–6473

    Article  CAS  Google Scholar 

  45. Singh UC, Kollman PA (1986) A combined abinitio quantum-mechanical and molecular mechanical method for carrying out simulations on complex molecular-systems—applications to the Ch3cl+Cl- exchange-reaction and gas-phase protonation of polyethers. J Comput Chem 7(6):718–730

    Article  CAS  Google Scholar 

  46. Théry V, Rinaldi D, Rivail JL, Maigret B, Ferenczy GG (1994) Quantum mechanical computations on very large molecular systems: the local self-consistent field method. J Comput Chem 15:269–282

    Article  Google Scholar 

  47. Monard G, Loos M, Théry V, Baka K, Rivail JL (1996) Hybrid classical quantum force field for modeling very large molecules. Int J Quant Chem 58:153–159

    Article  CAS  Google Scholar 

  48. Assfeld X, Rivail JL (1996) Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem Phys Lett 263(34):100–106

    Article  CAS  Google Scholar 

  49. Antonczak S, Monard G, Ruiz-López MF, Rivail JL (1998) Modeling of peptide hydrolysis by thermolysin. A semiempirical and QM/MM study. J Am Chem Soc 120(34):8825–8833

    Article  CAS  Google Scholar 

  50. Ferré N, Assfeld X, Rivail JL (2002) Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. J Comp Chem 58:153–159

    Google Scholar 

  51. Monari A, Rivail JL, Assfeld X (2013) Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc Chem Res 46:596–603

    Article  CAS  Google Scholar 

  52. Gao JL, Amara P, Alhambra C, Field MJ (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102(24):4714–4721

    Article  CAS  Google Scholar 

  53. Maseras F, Morokuma K (1995) Imomm—a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J Comput Chem 16(9):1170–1179

    Article  CAS  Google Scholar 

  54. Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struc-Theochem 461:1–21

    Article  Google Scholar 

  55. Maseras F (2000) The IMOMM method opens the way for the accurate calculation of “real” transition metal complexes. Chem Commun 19:1821–1827

    Article  Google Scholar 

  56. Ujaque G, Maseras F (2004) Applications of hybrid DFT/molecular mechanics to homogeneous catalysis. Struct Bond 112:117–149

    Article  CAS  Google Scholar 

  57. Bo C, Maseras F (2008) QM/MM methods in inorganic chemistry. Dalton T 22:2911–2919

    Article  CAS  Google Scholar 

  58. Moliner V, Turner AJ, Williams IH (1997) Transition-state structural refinement with GRACE and CHARMM: realistic modelling of lactate dehydrogenase using a combined quantum/classical method. Chem Commun 14:1271–1272

    Article  Google Scholar 

  59. Castillo R, Andrés J, Moliner V (1999) Catalytic mechanism of dihydrofolate reductase enzyme. A combined quantum-mechanical/molecular-mechanical characterization of transition state structure for the hydride transfer step. J Am Chem Soc 121(51):12140–12147

    Article  CAS  Google Scholar 

  60. Ferrer S, Silla E, Tuñón I, Martí S, Moliner V (2003) Catalytic mechanism of dihydrofolate reductase enzyme. A combined quantum-mechanical/molecular-mechanical characterization of the N5 protonation step. J Phys Chem B 107(50):14036–14041

    Article  CAS  Google Scholar 

  61. Cramer CJ, Truhlar DG (1999) Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 99(8):2161–2200

    Article  CAS  Google Scholar 

  62. Gilson MK (1993) Multiple-site titration and molecular modeling—2 rapid methods for computing energies and forces for ionizable groups in proteins. Proteins-Struct Funct Genet 15(3):266–282

    Article  CAS  Google Scholar 

  63. Antosiewicz J, Mccammon JA, Gilson MK (1994) Prediction of Ph-dependent properties of proteins. J Mol Biol 238(3):415–436

    Article  CAS  Google Scholar 

  64. Jensen JH, Li H, Robertson AD, Molina PA (2005) Prediction and rationalization of protein pK(a) values using QM and QM/MM methods. J Phys Chem A 109(30):6634–6643

    Article  CAS  Google Scholar 

  65. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pK(a) values. Proteins 61(4):704–721

    Article  CAS  Google Scholar 

  66. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pK(a) values for protein-ligand complexes. Proteins 73(3):765–783

    Article  CAS  Google Scholar 

  67. Ferrer S, Silla E, Tuñón I, Oliva M, Moliner V, Williams IH (2005) Dependence of enzyme reaction mechanism on protonation state of titratable residues and QM level description: lactate dehydrogenase. Chem Commun 47:5873–5875

    Article  CAS  Google Scholar 

  68. Martí S, Moliner V, Tuñón I (2005) Improving the QM/MM description of chemical processes: a dual level strategy to explore the potential energy surface in very large systems. J Chem Theory Comput 1(5):1008–1016

    Article  CAS  Google Scholar 

  69. Doron D, Major DT, Kohen A, Thiel W, Wu X (2011) Hybrid quantum and classical simulations of the dihydrofolate reductase catalyzed hydride transfer reaction on an accurate semi-empirical potential energy surface. J Chem Theory Comput 7(10):3420–3437

    Article  CAS  Google Scholar 

  70. Field M (2007) A practical introduction to the simulation of molecular systems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  71. Eyring H, Stearn AE (1939) The application of the theory of absolute reaction rates to proteins. Chem Rev 24(2):253–270

    Article  CAS  Google Scholar 

  72. Truhlar DG, Hase WL, Hynes JT (1983) Current status of transition-state theory. J Phys Chem 87(15):2664–2682

    Article  CAS  Google Scholar 

  73. Gao JL, Ma SH, Major DT, Nam K, Pu JZ, Truhlar DG (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106(8):3188–3209

    Article  CAS  Google Scholar 

  74. Garrett BCTDG (2005) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

  75. Kamerlin SCL, Warshel A (2010) At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78(6):1339–1375

    CAS  Google Scholar 

  76. Olsson MHM, Parson WW, Warshel A (2006) Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem Revs 106(5):1737–1756

    Article  CAS  Google Scholar 

  77. Ruiz-Pernía JJ, Tuñón I, Moliner V, Hynes JT, Roca M (2008) Dynamic effects on reaction rates in a Michael addition catalyzed by chalcone isomerase. Beyond the frozen environment approach. J Am Chem Soc 130(23):7477–7488

    Article  CAS  Google Scholar 

  78. Kollman PA (1993) Free-energy calculations—applications to chemical and biochemical phenomena. Chem Revs 93(7):2395–2417

    Article  CAS  Google Scholar 

  79. Kollman PA, Kuhn B, Donini O, Perakyla M, Stanton R, Bakowies D (2001) Elucidating the nature of enzyme catalysis utilizing a new twist on an old methodology: quantum mechanical—free energy calculations on chemical reactions in enzymes and in aqueous solution. Acc Chem Res 34(1):72–79

    Article  CAS  Google Scholar 

  80. Zhang YK, Liu HY, Yang WT (2000) Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 112(8):3483–3492

    Article  CAS  Google Scholar 

  81. Schenter GK, Garrett BC, Truhlar DG (2003) Generalized transition state theory in terms of the potential of mean force. J Chem Phys 119(12):5828–5833

    Article  CAS  Google Scholar 

  82. Roca M, Moliner V, Ruiz-Pernía JJ, Silla E, Tuñón I (2006) Activation free energy of catechol O-methyltransferase. Corrections to the potential of mean force. J Phys Chem A 110(2):503–509

    Article  CAS  Google Scholar 

  83. Torrie GM, Valleau JP (1977) Non-physical sampling distributions in Monte-Carlo free-energy estimation—umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  84. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The Method. J Comput Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  85. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98–103

    Article  CAS  Google Scholar 

  86. Luk LYP, Ruiz-Pernía JJ, Dawson WM, Roca M, Loveridge EJ, Glowacki DR, Harvey JN, Mulholland AJ, Tuñón I, Moliner V, Allemann RK (2013) Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Proc Natl Acad Sci USA 110(41):16344–16349

    Article  CAS  Google Scholar 

  87. Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free-energy landscape of enzyme catalysis. Biochemistry 47(11):3317–3321

    Article  CAS  Google Scholar 

  88. Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IE, Sauke TB, Shyamsunder E, Young RD (1985) Protein states and proteinquakes. Proc Natl Acad Sci USA 82(15):5000–5004

    Article  CAS  Google Scholar 

  89. Hay S, Scrutton NS (2012) Good vibrations in enzyme-catalysed reactions. Nature chemistry 4(3):161–168

    Article  CAS  Google Scholar 

  90. Schwartz SD (2013) Protein dynamics and the enzymatic reaction coordinate. Top Curr Chem 337:189–208

    Article  CAS  Google Scholar 

  91. Glowacki DR, Harvey JN, Mulholland AJ (2012) Taking Ockham’s razor to enzyme dynamics and catalysis. Nature Chem 4(3):169–176

    Article  CAS  Google Scholar 

  92. Ruiz-Pernía JJ, Luk LYP, García-Meseguer R, Martí S, Loveridge EJ, Tuñón I, Moliner V, Allemann RK (2013) Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase. J Am Chem Soc 135(49):18689–18696

    Article  CAS  Google Scholar 

  93. Ruiz-Pernía JJ, Martí S, Moliner V, Tuñón I (2012) A novel strategy to study electrostatic effects in chemical reactions: differences between the role of solvent and the active site of chalcone isomerase in a Michael addition. J Chem Theory Comput 8(5):1532–1535

    Article  CAS  Google Scholar 

  94. Bergsma JP, Gertner BJ, Wilson KR, Hynes JT (1987) Molecular-dynamics of a model Sn2 reaction in water. J Chem Phys 86(3):1356–1376

    Article  CAS  Google Scholar 

  95. Mullen RG, Shea JE, Peters B (2014) Communication: an existence test for dividing surfaces without recrossing. J Chem Phys 140 (4):041104

    Google Scholar 

  96. Doron D, Kohen A, Nam K, Major DT (2014) How accurate are transition states from simulations of enzymatic reactions? J Chem Theory Comput 10(5):1863–1871

    Article  CAS  Google Scholar 

  97. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318

    Article  CAS  Google Scholar 

  98. Castillo R, Roca M, Soriano A, Moliner V, Tuñón I (2008) Using grote-hynes theory to quantify dynamical effects on the reaction rate of enzymatic processes. The case of methyltransferases. J Phys Chem B 112(2):529–534

    Article  CAS  Google Scholar 

  99. Roca M, Moliner V, Tuñón I, Hynes JT (2006) Coupling between protein and reaction dynamics in enzymatic processes: application of Grote-Hynes theory to catechol O-methyltransferase. J Am Chem Soc 128(18):6186–6193

    Article  CAS  Google Scholar 

  100. Grote RF, Hynes JT (1980) The stable states picture of chemical-reactions. 2. Rate constants for condensed and gas-phase reaction models. J Chem Phys 73(6):2715–2732

    Article  CAS  Google Scholar 

  101. Warshel A (1998) Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J Biol Chem 273(42):27035–27038

    Article  CAS  Google Scholar 

  102. Xue QF, Yeung ES (1995) Differences in the chemical-reactivity of individual molecules of an enzyme. Nature 373(6516):681–683

    Article  CAS  Google Scholar 

  103. Lu HP, Xun LY, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282(5395):1877–1882

    Article  CAS  Google Scholar 

  104. Kou SC, Cherayil BJ, Min W, English BP, Xie XS (2005) Single-molecule Michaelis-Menten equations. J Phys Chem B 109(41):19068–19081

    Article  CAS  Google Scholar 

  105. Smiley RD, Hammes GG (2006) Single molecule studies of enzyme mechanisms. Chem Rev 106(8):3080–3094

    Article  CAS  Google Scholar 

  106. Min W, Xie XS, Bagchi B (2008) Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis. J Phys Chem B 112(2):454–466

    Article  CAS  Google Scholar 

  107. Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36(3):586–603

    Article  CAS  Google Scholar 

  108. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313(5793):1638–1642

    Article  CAS  Google Scholar 

  109. Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE (2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332(6026):234–238

    Article  CAS  Google Scholar 

  110. Loveridge EJ, Tey LH, Behiry EM, Dawson WM, Evans RM, Whittaker SBM, Gunther UL, Williams C, Crump MP, Allemann RK (2011) The role of large-scale motions in catalysis by dihydrofolate reductase. J Am Chem Soc 133(50):20561–20570

    Article  CAS  Google Scholar 

  111. Loveridge EJ, Behiry EM, Guo JN, Allemann RK (2012) Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis. Nature chemistry 4(4):292–297

    Article  CAS  Google Scholar 

  112. Swiderek K, Ruiz-Pernía JJ, Moliner V, Tuñón I (2014) Heavy enzymes—experimental and computational insights in enzyme dynamics. Curr Opin Chem Biol 21:11–18

    Article  CAS  Google Scholar 

  113. Adamczyk AJ, Cao J, Kamerlin SCL, Warshel A (2011) Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc Natl Acad Sci USA 108(34):14115–14120

    Article  CAS  Google Scholar 

  114. Borgis D, Hynes JT (1996) Curve crossing formulation for proton transfer reactions in solution. J Phys Chem 100(4):1118–1128

    Article  CAS  Google Scholar 

  115. Truhlar DG, Gao JL, García-Viloca M, Alhambra C, Corchado J, Sanchez ML, Poulsen TD (2004) Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions. Int J Quantum Chem 100(6):1136–1152

    Article  CAS  Google Scholar 

  116. Singh P, Sen A, Francis K, Kohen A (2014) Extension and limits of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. J Am Chem Soc 136(6):2575–2582

    Article  CAS  Google Scholar 

  117. Wang Z, Abeysinghe T, Finer-Moore JS, Stroud RM, Kohen A (2012) A remote mutation affects the hydride transfer by disrupting concerted protein motions in thymidylate synthase. J Am Chem Soc 134(42):17722–17730

    Article  CAS  Google Scholar 

  118. Kohen A, Limbach H-H (eds) (2006) Isotope effects in chemistry and biology. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  119. Rokop S, Gajda L, Parmerte S, Crespi HL, Katz JJ (1969) Purification and characterization of fully deuterated enzymes. Biochim Biophys Acta 191(3):707–715

    Article  CAS  Google Scholar 

  120. Silva RG, Murkin AS, Schramm VL (2011) Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme. Proc Natl Acad Sci USA 108(46):18661–18665

    Article  CAS  Google Scholar 

  121. Luk LYP, Ruiz-Pernía JJ, Dawson WM, Loveridge EJ, Tuñón I, Moliner V, Allemann RK (2014) Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant. J Am Chem Soc 136(49):17317–17323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Economía y Competitividad for project CTQ2012-36253-C03, Universitat Jaume I (project P1 1B2014-26) and Generalitat Valenciana (PROMETEOII/2014/022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vicent Moliner or Iñaki Tuñón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Javier Ruiz-Pernía, J., Moliner, V., Tuñón, I. (2015). Exploring Chemical Reactivity in Enzyme Catalyzed Processes Using QM/MM Methods: An Application to Dihydrofolate Reductase. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_15

Download citation

Publish with us

Policies and ethics