Skip to main content

Feedforward Control Based on Inverse Hysteresis Models

  • Chapter
  • First Online:
Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter presents the rate-dependent hysteresis compensation of a piezoelectric nanopositioning stage using the feedforward control based on an inverse hysteresis model. Three different controllers are realized and compared, which employ Bouc–Wen model, modified Prandtl–Ishlinskii (MPI) model, and least squares support vector machines (LSSVM)-based intelligent model, respectively. Experimental studies demonstrate the superiority of LSSVM model in hysteresis modeling and compensation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang, W.T., Khosla, P.K., Riviere, C.N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)

    Article  Google Scholar 

  2. Birge, B.: PSOt—a particle swarm optimization toolbox for use with Matlab. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 182–186. Indianapolis, Indiana, USA (2003)

    Google Scholar 

  3. Boukari, A.F., Carmona, J.C., Moraru, G., Malburet, F., Chaaba, A., Douimi, M.: Piezo-actuators modeling for smart applications. Mechatronics 21(1), 339–349 (2011)

    Article  Google Scholar 

  4. De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., De Moor, B., Vandewalle, J., Suykens, J.A.K.: LS-SVMlab toolbox user’s guide version 1.7. Internal Report 10-146, ESAT-SISTA, K.U.Leuven, Leuven, Belgium (2010)

    Google Scholar 

  5. Dong, R., Tan, Y., Chen, H., Xie, Y.: A neural networks based model for rate-dependent hysteresis for piezoelectric actuators. Sens. Actuator A-Phys. 143(2), 370–376 (2008)

    Article  MATH  Google Scholar 

  6. Ge, P., Jouaneh, M.: Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4(3), 209–216 (1996)

    Article  Google Scholar 

  7. Janaideh, M.A., Rakheja, S., Su, C.Y.: Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 19(5), 656–670 (2009)

    Article  MATH  Google Scholar 

  8. Juhasz, L., Maas, J., Borovac, B.: Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics 21(1), 329–338 (2011)

    Article  MATH  Google Scholar 

  9. Kim, J., Kang, B.: Micro-macro linear piezoelectric motor based on self-moving cell. Mechatronics 19(7), 1134–1142 (2009)

    Article  Google Scholar 

  10. Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach. Eur. J. Control 9(4), 407–421 (2003)

    Article  Google Scholar 

  11. Li, Y., Xu, Q.: Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Trans. Contr. Syst. Technol. 18(4), 798–810 (2010)

    Article  Google Scholar 

  12. Lin, C.J., Chen, S.Y.: Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage. Mechatronics 19(6), 829–839 (2009)

    Article  Google Scholar 

  13. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  14. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific Publishing Co., Singapore (2002)

    Book  MATH  Google Scholar 

  15. Van Gestel, T., Suykens, J.A.K., Baestaens, D.E., Lambrechts, A., Lanckriet, G., Vandaele, B., De Moor, B., Vandewalle, J.: Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Trans. Neural Netw. 12(4), 809–821 (2001)

    Article  Google Scholar 

  16. Vong, C.M., Wong, P.K., Li, Y.P.: Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference. Eng. Appl. Artif. Intell. 19(3), 277–287 (2006)

    Article  Google Scholar 

  17. Wong, P.K., Vong, C.M., Tam, L.M., Li, K.: Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least-square support vector machines. Int. J. Veh. Syst. Model. Test. 3(4), 312–330 (2008)

    Google Scholar 

  18. Xu, Q., Li, Y.: Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation. J. Dyn. Syst. Meas. Control-Trans. ASME 132(4), 041,011 (2010)

    Google Scholar 

  19. Yang, J., Bouzerdoum, A., Phung, S.L.: A training algorithm for sparse LS-SVM using compressive sampling. In: Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing, pp. 2054–2057 (2010)

    Google Scholar 

  20. Yu, S., Alici, G., Shirinzadeh, B., Smith, J.: Sliding mode control of a piezoelectric actuator with neural network compensating rate-dependent hysteresis. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3641–3645 (2005)

    Google Scholar 

  21. Yu, Y., Xiao, Z., Naganathan, N.G., Dukkipati, R.V.: Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system. Mech. Mach. Theory 37(1), 75–89 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, Q., Tan, K.K. (2016). Feedforward Control Based on Inverse Hysteresis Models. In: Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-21623-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21623-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21622-5

  • Online ISBN: 978-3-319-21623-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics