Skip to main content

Position/Force Switching Control of a Miniature Gripper

  • Chapter
  • First Online:
Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems

Part of the book series: Advances in Industrial Control ((AIC))

  • 1485 Accesses

Abstract

This chapter presents the design and implementation of combined position and force control of a piezoelectrically actuated compliant gripper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkkiomaki, O., Kyrki, V., Kalviainen, H., Liu, Y., Handroos, H.: Smooth transition from motion to force control in robotic manipulation using vision. In: Proceeding 9th International Conference on Control, Automation, Robotics and Vision, pp. 1–6 (2006)

    Google Scholar 

  2. Beyeler, F., Neild, A., Oberti, S., Bell, D.J., Sun, Y., Dual, J., Nelson, B.J.: Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J. Microelectromech. Syst. 16(1), 7–15 (2007)

    Article  Google Scholar 

  3. Cao, Y., Cheng, L., Chen, X.B., Peng, J.Y.: An inversion-based model predictive control with an integral-of-error state variable for piezoelectric actuators. IEEE/ASME Trans. Mechatron. 18(3), 895–904 (2013)

    Article  Google Scholar 

  4. Capisani, L.M., Ferrara, A.: Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans. Ind. Electron. 59(8), 3189–3198 (2012)

    Article  Google Scholar 

  5. Gao, B., Shao, J., Han, G., Sun, G., Yang, X., Wu, D.: Using fuzzy switching to achieve the smooth switching of force and position. Appl. Mech. Mater. 274, 638–641 (2013)

    Article  Google Scholar 

  6. Hara, S., Yamada, Y.: A control method switching from servo automatic transfer to force sensorless impedance control manual positioning. In: Proceeding IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 292–298 (2007)

    Google Scholar 

  7. Leang, K.K., Shan, Y., Song, S., Kim, K.J.: Integrated sensing for IPMC actuators using strain gages for underwater applications. IEEE/ASME Trans. Mechatron. 17(2), 345–355 (2012)

    Article  Google Scholar 

  8. Liaw, H.C., Shirinzadeh, B.: Robust adaptive constrained motion tracking control of piezo-actuated flexure-based mechanisms for micro/nano manipulation. IEEE Trans. Ind. Electron. 58(4), 1406–1415 (2011)

    Article  Google Scholar 

  9. Minase, J., Lu, T.F., Cazzolato, B., Grainger, S.: A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis. Eng. 34(10), 692–700 (2010)

    Article  Google Scholar 

  10. Motoi, N., Shimono, T., Kubo, R., Kawamura, A.: Task realization by a force-based variable compliance controller for flexible motion control systems. IEEE Trans. Ind. Electron. 61(2), 1009–1021 (2014)

    Article  Google Scholar 

  11. Navarro, C., Treesatayapun, C., Baltazar, A.: Determination of the instantaneous initial contact point on a parallel gripper using a multi input fuzzy rules emulated network controller with feedback from ultrasonic and force sensors. In: Batyrshin I., Gonzalez Mendoza M. (eds.) Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 7629, pp. 261–272. Springer, Berlin (2013)

    Google Scholar 

  12. Niksefat, N., Wu, Q., Sepehri, N.: Stable control of an electro-hydraulic actuator during contact tasks: Theory and experiments. In: Proceeding of American Control Conference, pp. 4114–4118 (2000)

    Google Scholar 

  13. Rakotondrabe, M., Ivan, I.A.: Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans. Automat. Sci. Eng. 8(4), 824–834 (2011)

    Article  Google Scholar 

  14. Reddy, A.N., Maheshwari, N., Sahu, D.K., Ananthasuresh, G.K.: Miniature compliant grippers with vision-based force sensing. IEEE Trans. Robot. 26(5), 867–877 (2010)

    Article  Google Scholar 

  15. Sakaino, S., Sato, T., Ohnishi, K.: Multi-DOF micro-macro bilateral controller using oblique coordinate control. IEEE Trans. Ind. Inform. 7(3), 446–454 (2011)

    Article  Google Scholar 

  16. Sakaino, S., Sato, T., Ohnishi, K.: Precise position/force hybrid control with modal mass decoupling and bilateral communication between different structures. IEEE Trans. Ind. Inform. 7(2), 266–276 (2011)

    Article  Google Scholar 

  17. Shimada, N., Yoshioka, T., Ohishi, K., Miyazaki, T.: Novel force-sensor-less contact motion control for quick and smooth industrial robot motion. In: Proc. IECON 2011 - 37th Annual Conf. on IEEE Industrial Electronics Society, pp. 4238–4243 (2011)

    Google Scholar 

  18. Takahashi, T., Tsuboi, T., Kishida, T., Kawanami, Y., Shimizu, S., Iribe, M., Fukushima, T., Fujita, M.: Adaptive grasping by multi fingered hand with tactile sensor based on robust force and position control. In: Proceeding International Conference on Robotics and Automation, pp. 264–271 (2008)

    Google Scholar 

  19. Wang, D.H., Yang, Q., Dong, H.M.: A monolithic compliant piezoelectric-driven microgripper: Design, modeling, and testing. IEEE/ASME Trans. Mechatron. 18(1), 138–147 (2013)

    Article  Google Scholar 

  20. Xu, Q.: Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper. IEEE Trans. Robot. 29(3), 663–673 (2013)

    Article  Google Scholar 

  21. Xu, Q.: New robust position and force regulation for a compliant microgripper. In: Proceeding 9th IEEE International Conference on Automation Science and Engineering, pp. 801–806 (2013)

    Google Scholar 

  22. Yong, Y.K., Moheimani, S.O.R., Kenton, B.J., Leang, K.K.: High-speed flexure-guided nanopositioning: Mechanical design and control issues. Rev. Sci. Instrum. 83(12), 121101 (2012)

    Article  Google Scholar 

  23. Zhou, Q., Korhonen, P., Laitinen, J., Sjovall, S.: Automatic dextrous microhandling based on a 6-DOF microgripper. J. Micromechatronics 3(3–4), 359–387 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, Q., Tan, K.K. (2016). Position/Force Switching Control of a Miniature Gripper. In: Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-21623-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21623-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21622-5

  • Online ISBN: 978-3-319-21623-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics