Skip to main content

Increased Complexity

  • Chapter
  • First Online:
Complexity and Control in Quantum Photonics

Part of the book series: Springer Theses ((Springer Theses))

  • 910 Accesses

Abstract

A survey of the literature reveals a rich history of experiments in which p photons are sent through an optical circuit with m modes. The experimentalist looks to see where the photons went, examining spatio-temporal correlations using an array of single-photon detectors, in an effort to determine whether the experiment is (i) working properly and/or (ii) doing anything interesting.

Actually, if we wanted to, although it’s expensive, we could put detectors all over [. . . ] and build up the whole curve simultaneously. . .

Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The third, completed very recently, is described in a pre-print [1] due to Matthews et al.

  2. 2.

    In a circuit model architecture, replacing qubits with d-level systems has been shown to give a modest multiplicative \(\log _2d\) advantage in the number of gate operations [2] and facilitate controlled-\(\hat{U}\) operations [3].

  3. 3.

    In fact, a classical random walk was used as part of a machine learning algorithm to optimize the performance of the CNOT-MZ chip [9].

  4. 4.

    Note that the momentum of the ball in the Galton board gives the system some memory of past states, and the system is therefore only approximately Markovian.

  5. 5.

    The ECT is not sufficiently well-posed to ever be formally disproved, only weakened.

  6. 6.

    or 143, depending on how you define “quantum computer” [54].

  7. 7.

    A CPU containing in excess of a billion nanoscale transistors can be bought for less than £10.

  8. 8.

    Allowing postselection on exponentially unlikely outcomes for both quantum and classical machines.

  9. 9.

    Benchmarks and optimized Cython code for the permanent are given in Appendix A.

  10. 10.

    By introducing a strong, controlled, uniform source of noise, we “override” any effects from the uncontrolled, non-uniform thermal/acoustic phase fluctuation. In this sense, the method described here shares some similarity with the techniques for precise characterization under environmental noise described in Sect. 4.5.

  11. 11.

    Higher-dimensional quadrants of hypercubes are referred to as octants or hyper-octants.

  12. 12.

    Careful control of the phase of input photons, following the classical approach of beam steering using a phased array, might conceivably reproduce this effect.

  13. 13.

    16 detectors are used in Ref. [60], but only a subset of possible detection events are recorded.

  14. 14.

    Doubts might be raised by the fact that the number of hypercube orthants which intersect with the main diagonal of the correlation matrix falls off exponentially with p.

References

  1. J.C.F. Matthews, R. Whittaker, J.L. O’Brien, P.S. Turner, Testing randomness with photons (2013). arXiv:1312.1940

  2. A. Muthukrishnan, C.R. Stroud Jr, Multivalued logic gates for quantum computation. Phys. Rev. A 62(5), 052309 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. X.-Q. Zhou, T.C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B.P. Lanyon, J.L. O’Brien, Adding control to arbitrary quantum operations (2010)

    Google Scholar 

  4. J. Sun, E. Timurdogan, A. Yaacobi, E.S. Hosseini, M.R. Watts, Large-scale nanophotonic phased array. Nature 493, 195 (2013)

    Google Scholar 

  5. S. Aaronson, A. Arkhipov, The computational complexity of linear optics (2010)

    Google Scholar 

  6. G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  ADS  Google Scholar 

  7. D.A. Raichlen, B.M. Wood, A.D. Gordon, A.Z.P. Mabulla, F.W. Marlowe, H. Pontzer, Evidence of lévy walk foraging patterns in human hunter-gatherers. Proc. Nat. Acad. Sci. (2013)

    Google Scholar 

  8. R. Motwani, P. Raghvan, Randomized Algorithms (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  9. H.W. Li, J. Wabnig, D. Bitauld, P. Shadbolt, A. Politi, A. Laing, J.L. O’Brien, A.O. Niskanen, Calibration and high fidelity measurement of a quantum photonic chip. New J. Phys. 15(6), 063017 (2013)

    Article  ADS  Google Scholar 

  10. M. Jerrum, A. Sinclair, E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(17), 174106 (2008)

    Article  ADS  Google Scholar 

  12. J. Klafter, R. Silbey, Phys. Lett. 76A, 143 (1980)

    Article  ADS  Google Scholar 

  13. A.M. Childs, J. Goldstone, Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. N. Shenvi, J. Kempe, K.B. Whaley, Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  15. A.M. Childs, J.M. Eisenberg, Quantum algorithms for subset finding (2003). arXiv:quant-ph/0311038

  16. H. Buhrman, R. Spalek, Quantum verification of matrix products (2004). arXiv:quant-ph/0409035

  17. E. Farhi, J. Goldstone, S. Gutmann, A quantum algorithm for the Hamiltonian NAND Tree (2007). arXiv:quant-ph/0702144

  18. B.W. Reichardt, R. Spalek. Span-program-based quantum algorithm for evaluating formulas (2007). arXiv:0710.2630

  19. A. Childs, Universal computation by quantum walk. Phys. Rev. Lett. 102 (2009)

    Google Scholar 

  20. A.M. Childs, D. Gosset, Z. Webb, Universal computation by multiparticle quantum walk. Science 339, 791–794 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  21. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phy. Theor. Phy. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  22. D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Quantum walks on graphs (2000). arXiv:quant-ph/0012090

  23. A. Nayak, A. Vishwanath, Quantum walk on the line (2000). arXiv:quant-ph/0010117

  24. J. Watrous, Quantum simulations of classical random walks and undirected graph connectivity (1998). arXiv:cs/9812012

  25. A.M. Childs, E. Farhi, S. Gutmann, An example of the difference between quantum and classical random walks (2001). arXiv:quant-ph/0103020

  26. E. Farhi, S. Gutmann, Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Childs, On the relationship between continuous-and discrete-time quantum walk. Commun. Math. Phys. (2010)

    Google Scholar 

  28. M.C. Rechtsman, J.M. Zeuner, A. Tünnermann, S. Nolte, M. Segev, A. Szameit, Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics 7, 153–158 (2013)

    Article  ADS  Google Scholar 

  29. J.D.A. Meinecke, K. Poulios, A. Politi, J.C.F. Matthews, A. Peruzzo, N. Ismail, K. Wörhoff, J.L. O’Brien, M.G. Thompson, Coherent time evolution and boundary conditions of two-photon quantum walks in waveguide arrays. Phys. Rev. A 88(1), 012308 (2013)

    Article  ADS  Google Scholar 

  30. M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)

    Google Scholar 

  31. H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, T. Schaetz, Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)

    Article  ADS  Google Scholar 

  32. F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, C.F. Roos, Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104(10), 100503 (2010)

    Article  Google Scholar 

  33. J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, R. Han, Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67(4), 042316 (2003)

    Article  ADS  Google Scholar 

  34. D. Bouwmeester, I. Marzoli, G.P. Karman, W. Schleich, J.P. Woerdman, Optical galton board. Phys. Rev. A 61, 013410 (1999)

    Article  ADS  Google Scholar 

  35. A. Schreiber, K.N. Cassemiro, V. Potoček, A. Gábris, P.J. Mosley, E. Andersson, I. Jex, Ch. Silberhorn, Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

    Article  ADS  Google Scholar 

  36. A. Schreiber, K.N. Cassemiro, V. Potoček, A. Gábris, I. Jex, Ch. Silberhorn, Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011)

    Article  ADS  Google Scholar 

  37. M.A. Broome, A. Fedrizzi, B.P. Lanyon, I. Kassal, A. Aspuru-Guzik, A.G. White, Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    Article  ADS  Google Scholar 

  38. P. Knight, E. Roldan, Quantum walk on the line as an interference phenomenon. Phys. Rev. A (2003)

    Google Scholar 

  39. A. Childs, R. Cleve, E. Deotto, E. Farhi, Exponential algorithmic speedup by a quantum walk. in Proceedings of STOC’2003 (2003)

    Google Scholar 

  40. Y. Omar, N. Paunković, L. Sheridan, Quantum walk on a line with two entangled particles. Phys. Rev. A 74 (2006)

    Google Scholar 

  41. A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. OBrien. Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Google Scholar 

  42. J.C.F. Matthews, K. Poulios, J.D.A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M.G. Thompson, J.L. O’Brien. Observing fermionic statistics with photons in arbitrary processes: scientific reports: nature publishing group. Sci. Rep. 3 (2013)

    Google Scholar 

  43. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

    Google Scholar 

  44. A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino, Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics (2013)

    Google Scholar 

  45. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. de Nicola, F. Sciarrino, P. Mataloni, Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013)

    Article  ADS  Google Scholar 

  46. K. Poulios, R. Keil, D. Fry, J.D.A. Meinecke, J.C.F. Matthews, A. Politi, M. Lobino, M. Gräfe, M. Heinrich, S. Nolte, A. Szameit, J.L. O’Brien, Quantum walks of correlated photon pairs in two-dimensional waveguide arrays (2013)

    Google Scholar 

  47. T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I. Bloch, C. Gross, Microscopic observation of magnon bound states and their dynamics (2013). arXiv:1305.6598

    Google Scholar 

  48. A.J. Bessen, Distributions of continuous-time quantum walks (2006). arXiv:quant-ph/0609128

  49. Ian Parberry

    Google Scholar 

  50. N. Dershowitz, Y. Gurevich, A natural axiomatization of computability and proof of church’s thesis. Bull. Symbolic Logic 14, (2008)

    Google Scholar 

  51. N. Dershowitz, E. Falkovich, A formalization and proof of the extended church-turing thesis. EPTCS (2011)

    Google Scholar 

  52. G. Kalai, How quantum computers fail: quantum codes, correlations in physical systems, and noise accumulation (2011)

    Google Scholar 

  53. E. Martín-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, J.L. O’Brien, Experimental realization of Shor’s quantum factoring algorithm using qubit recycling. Nat. Photonics 6, 773–776 (2012)

    Article  ADS  Google Scholar 

  54. Xu Nanyang, Jing Zhu, Lu Dawei, Xianyi Zhou, Xinhua Peng, Du Jiangfeng, Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)

    Article  Google Scholar 

  55. S.J. Devitt, K. Nemoto, Programming a topological quantum computer (2012)

    Google Scholar 

  56. Alan Aspuru-Guzik, Philip Walther, Photonic quantum simulators. Nat. Phys. 8(4), 285–291 (2012)

    Article  Google Scholar 

  57. L.G. Valiant, The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  58. L. Gurvits, On the complexity of mixed discriminants and related problems. Math. Found. Comput. Sci. 447–458 (2005)

    Google Scholar 

  59. H.J. Ryser, Combinatorial mathematics. Carus Math. Monogr. 14 (1963)

    Google Scholar 

  60. X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu , Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photonics 6(4), 225–228 (2012)

    Google Scholar 

  61. A. Leverrier, R. García-Patrón. Does Boson sampling need fault-tolerance? (2013)

    Google Scholar 

  62. C. Gogolin, M. Kliesch, L. Aolita, J. Eisert, Boson-sampling in the light of sample complexity (2013)

    Google Scholar 

  63. M.A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T.C. Ralph, A.G. White, Photonic Boson sampling in a tunable circuit. Science 339, 794–798 (2013)

    Article  ADS  Google Scholar 

  64. J.B. Spring, B.J. Metcalf, P.C. Humphreys, W.S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N.K. Langford, D. Kundys, J.C. Gates, B.J. Smith, P.G.R. Smith, I.A. Walmsley, Boson sampling on a photonic chip. Science 339, 798–801 (2013)

    Article  ADS  Google Scholar 

  65. A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino, Experimental boson sampling in arbitrary integrated photonic circuits. Nat. Photonics 7(7), 545 (2013)

    Article  ADS  Google Scholar 

  66. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Experimental Boson sampling. Nat. Photonics 7(7), 540–544 (2013)

    Google Scholar 

  67. A. Laing, J.L. O’Brien, Super-stable tomography of any linear optical device. (2012)

    Google Scholar 

  68. S. Aaronson, A, Arkhipov, BosonSampling is far from uniform. (2013)

    Google Scholar 

  69. N. Spagnolo, C. Vitelli, M. Bentivegna, D.J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E.F. Galvao, F. Sciarrino, Efficient experimental validation of photonic boson sampling against the uniform distribution. (2013)

    Google Scholar 

  70. L. Trevisan, M. Tulsiani, S. Vadhan, Regularity, boosting, and efficiently simulating every high-entropy distribution. in Proceedings of IEEE Conference on Computational Complexity (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Shadbolt .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shadbolt, P. (2016). Increased Complexity. In: Complexity and Control in Quantum Photonics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-21518-1_6

Download citation

Publish with us

Policies and ethics