Skip to main content

Three-Dimensional Bioprinting in Regenerative Medicine

  • Chapter
  • First Online:
Book cover Bioprinting in Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this chapter, including vasculature , muscle , cartilage , and bone . In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  2. Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng. 2013;15:177–200.

    Article  CAS  PubMed  Google Scholar 

  3. Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol. 2005;23(7):821–3.

    Article  CAS  PubMed  Google Scholar 

  4. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  5. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23(7):879–84.

    Article  CAS  PubMed  Google Scholar 

  6. Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001;7(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  7. Kang HW, Park JH, Kang TY, Seol YJ, Cho DW. Unit cell-based computer-aided manufacturing system for tissue engineering. Biofabrication. 2012;4(1):015005.

    Article  PubMed  Google Scholar 

  8. Hu C, Uchida T, Tercero C, Ikeda S, Ooe K, Fukuda T, et al. Development of biodegradable scaffolds based on magnetically guided assembly of magnetic sugar particles. J Biotechnol. 2012;159(1–2):90–8. (Feb 14).

    Article  CAS  PubMed  Google Scholar 

  9. Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Biomed Eng. 2001;3:225–43.

    Article  CAS  PubMed  Google Scholar 

  10. Cui X, Boland T, DʼLima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6(2):149–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106(6):963–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30(31):6221–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cui X, Boland T. Simultaneous deposition of human microvascular endothelial cells and biomaterials for human microvasculature fabrication using inkjet printing. NIP24/digital Fabrication 2008: 24th International Conference on Digital Printing Technologies, Technical Program and Proceedings 2008;24:480–3.

    Google Scholar 

  14. Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11–12):1304–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. 2015. Jan 8 doi:10.1002/biot.201400635.

    Google Scholar 

  16. Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J. 2014;9(10):1304–11.

    Article  CAS  PubMed  Google Scholar 

  17. Cui X, Breitenkamp K, Finn MG, Lotz M, Colwell CW Jr. Direct human cartilage repair using thermal inkjet printing technology. Osteoarthritis Cartilage. 2011;19:S47–S8.

    Article  Google Scholar 

  18. Cui X, Gao G, Yonezawa T, Dai G. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp 2014;(88), e51294. doi:10.3791/51294.

    Google Scholar 

  19. Cui X, Gao G, Qiu Y. Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett. 2013;35(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  20. Cui X, Hasegawa A, Lotz M, D’Lima D. Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng. 2012;109(9):2369–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cui X, Breitenkamp K, Lotz M, D’Lima D. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng. 2012;109(9):2357–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12(5):1325–35.

    Article  CAS  PubMed  Google Scholar 

  23. Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication. 2010;2(1):014108.

    Article  CAS  PubMed  Google Scholar 

  24. Shor L, Guceri S, Chang R, Gordon J, Kang Q, Hartsock L, et al. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication. 2009;1(1):015003.

    Article  CAS  PubMed  Google Scholar 

  25. Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6(2):139–47.

    Article  CAS  PubMed  Google Scholar 

  26. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6(7):2494–500.

    Article  CAS  PubMed  Google Scholar 

  27. Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond). 2010;5(3):507–15.

    Article  PubMed  Google Scholar 

  28. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 2010;16(1):157–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Odde DJ, Renn MJ. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 1999;17(10):385–9.

    Article  CAS  PubMed  Google Scholar 

  31. Odde DJ, Renn MJ. Laser-guided direct writing of living cells. Biotechnol Bioeng. 2000;67(3):312–8.

    Article  CAS  PubMed  Google Scholar 

  32. Mohebi MM, Evans JRG. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J Comb Chem. 2002;4(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  33. Beeson R. Thermal (TIJ) or Piezo? Who cares? IMI 7th Annual Ink Jet Printing Conference; 1998.

    Google Scholar 

  34. Hock SW, Johnson DA, Van Veen MA. Inventors; Print quality optimization for a color ink-jet printer by using a larger nozzle for the black ink only.US5521622. 1996.

    Google Scholar 

  35. Canfield B, Clayton H, Yeung KWW. Inventors; Method and apparatus for reducing the size of drops ejected from a thermal ink jet printhead.US5673069. 1997.

    Google Scholar 

  36. Hudson KR, Cowan PB, Gondek JS. Inventors; Ink drop volume variance compensation for inkjet printing.US6042211. 2000.

    Google Scholar 

  37. de Jong J, de Bruin G, Reinten H, van den Berg M, Wijshoff H, Versluis M, et al. Air entrapment in piezo-driven inkjet printheads. J Acoust Soc Am. 2006 ;120(3):1257–65.

    Article  Google Scholar 

  38. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, et al. High-resolution inkjet printing of all-polymer transistor circuits. Science. 2000;290(5499):2123–6.

    Article  CAS  PubMed  Google Scholar 

  39. Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using Bubble Jet technology. Nat Biotechnol. 2000;18(4):438–41.

    Article  CAS  PubMed  Google Scholar 

  40. Goldmann T, Gonzalez JS. DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods. 2000;42(3):105–10.

    Article  CAS  PubMed  Google Scholar 

  41. Seetharam R, Sharma SK. Purification and analysis of recombinant proteins. New York: Marcel Dekker; 1991. p. 69.

    Google Scholar 

  42. Tirella A, Vozzi F, De MC, Vozzi G, Sandri T, Sassano D, et al. Substrate stiffness influences high resolution printing of living cells with an ink-jet system. J Biosci Bioeng. 2011;112(1):79–85.

    Google Scholar 

  43. Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng Part A. 2009;15(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  44. Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods. 2012;18(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  45. Xi J, Schmidt JJ, Montemagno CD. Self-assembled microdevices driven by muscle. Nat Mater. 2005;4(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T. A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip. 2007;7(2):207–12.

    Article  CAS  PubMed  Google Scholar 

  47. Harms H, Wells MC, van dM Jr. Whole-cell living biosensors–are they ready for environmental application? Appl Microbiol Biotechnol. 2006;70(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  48. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    Article  CAS  PubMed  Google Scholar 

  49. Asano T, Ishizua T, Yawo H. Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol Bioeng. 2012;109(1):199–204.

    Article  CAS  PubMed  Google Scholar 

  50. Yaffe D, Saxel O. A myogenic cell line with altered serum requirements for differentiation. Differentiation. 1977;7(3):159–66.

    Article  CAS  PubMed  Google Scholar 

  51. Miller JB. Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. J Cell Biol. 1990;111(3):1149–59.

    Article  CAS  PubMed  Google Scholar 

  52. Fujita H, Shimizu K, Nagamori E. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film. Biotechnol Bioeng. 2010;106(3):482–9.

    CAS  PubMed  Google Scholar 

  53. Mow VC, Hayes WC. Basic orthopaedic biomechanics. 2 ed. Philadelphia: Lippincott Williams & Wilkins; 1997.

    Google Scholar 

  54. Rasanen P, Paavolainen P, Sintonen H, Koivisto AM, Marja B, Ryynanen OP, et al. Effectiveness of hip or knee replacement surgery in terms of quality-adjusted life years and costs. Acta Orthop. 2007;78(1):108–15.

    Article  PubMed  Google Scholar 

  55. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  56. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432–63.

    Article  CAS  PubMed  Google Scholar 

  57. Kalson NS, Gikas PD, Briggs TWR. Current strategies for knee cartilage repair. Int J Clin Pract. 2010;64(10):1444–52.

    Article  CAS  PubMed  Google Scholar 

  58. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular-cartilage. J Bone Joint Surg-Am. 1993;75 A(4):532–53.

    CAS  PubMed  Google Scholar 

  59. Kim TK, Sharma B, Williams CG, Ruffner MA, Malik A, McFarland EG, et al. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage. 2003;11(9):653–64.

    Article  PubMed  Google Scholar 

  60. Cui X, Breitenkamp K, Finn MG, Lotz MK, D'Lima DD. Direct human cartilage repair using 3D bioprinting technology. Tissue Eng Part A. 2012;18(11–12):1304–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7(43):209–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28(15):2491–504.

    Article  CAS  PubMed  Google Scholar 

  63. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74(2):782–8.

    Article  CAS  PubMed  Google Scholar 

  64. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  PubMed  Google Scholar 

  65. Deitch S, Kunkle C, Cui X, Boland T, Dean D. Collagen matrix alignment using inkjet printer technology. Mater Res Soc Symp Proc. 2008;1094:52–7.

    Article  Google Scholar 

  66. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1(9):910–7.

    Article  CAS  PubMed  Google Scholar 

  67. Boland T, Cui X, Aho M, Baicu C, Zile M. Image based printing of structured biomaterials for realizing complex 3D cardiovascular constructs. J Imaging Sci Technol. 2006;2:86–8.

    Google Scholar 

  68. Catelas I, Sese N, Wu BM, Dunn JC, Helgerson S, Tawil B. Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng. 2006;12(8):2385–96.

    Article  CAS  PubMed  Google Scholar 

  69. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A. 2008;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  70. Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A. 2011;18(5–6):533–45. Nov 8.

    PubMed Central  PubMed  Google Scholar 

  71. Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 2006;12(12):3497–508.

    Article  CAS  PubMed  Google Scholar 

  72. Hoenig E, Winkler T, Mielke G, Paetzold H, Schuettler D, Goepfert C, et al. High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng Part A. 2011;17(9–10):1401–11.

    Article  CAS  PubMed  Google Scholar 

  73. Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002;59(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  74. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res. 2000;51(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  75. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64(2):278–94.

    Article  CAS  PubMed  Google Scholar 

  76. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.

    Article  CAS  PubMed  Google Scholar 

  77. Triffitt JT. Osteogenic stem cells and orthopedic engineering: summary and update. J Biomed Mater Res. 2002;63(4):384–9.

    Article  CAS  PubMed  Google Scholar 

  78. Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone 1999;25(2 Suppl):5S–9 S.

    Article  CAS  PubMed  Google Scholar 

  79. Leboy PS, Beresford JN, Devlin C, Owen ME. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol. 1991;146(3):370–8.

    Article  CAS  PubMed  Google Scholar 

  80. Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelsberg TC, Riggs BL. Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res. 1996;11(3):312–24.

    Article  CAS  PubMed  Google Scholar 

  81. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49(3):328–37.

    Article  CAS  PubMed  Google Scholar 

  82. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng. 2010;38(6):2183–96.

    Article  PubMed  Google Scholar 

  83. Patel M, Patel KJ, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering. J Biomed Mater Res A. 2010;94(2):408–18.

    PubMed  Google Scholar 

  84. Hunziker EB, Driesang IM. Functional barrier principle for growth-factor-based articular cartilage repair. Osteoarthritis Cartilage. 2003;11(5):320–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Guohao Dai, Arndt F. Schilling, M.G. Finn, Kurt Breitenkamp for constructive suggestions and technical support. This work was funded by the Fundamental Research Funds for the Central Universities (WUT: 2015IB004), NSF 1011796, New York Capital Region Research Alliance grant, and Stemorgan Therapeutics R&D support (TERM002). The authors indicate no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Cui Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cui, X. (2015). Three-Dimensional Bioprinting in Regenerative Medicine. In: Turksen, K. (eds) Bioprinting in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21386-6_5

Download citation

Publish with us

Policies and ethics