Skip to main content

Models of Free Quantum Field Theories on Curved Backgrounds

  • Chapter
  • First Online:
Advances in Algebraic Quantum Field Theory

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

Free quantum field theories on curved backgrounds are discussed via three explicit examples: the real scalar field, the Dirac field and the Proca field. The first step consists of outlining the main properties of globally hyperbolic spacetimes, that is the class of manifolds on which the classical dynamics of all physically relevant free fields can be written in terms of a Cauchy problem. The set of all smooth solutions of the latter encompasses the dynamically allowed configurations which are used to identify via a suitable pairing a collection of classical observables. As a last step we use such collection to construct a \(*\)-algebra which encodes the information on the dynamics and the canonical commutation or anti-commutation relations depending on the Bosonic or Fermionic nature of the underlying field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that, in this chapter, we employ the following convention for the tensor components: Latin indices, \(a,b,c,\ldots \), are used for abstract tensor indices, Greek ones, \(\mu ,\nu ,\ldots \) for coordinates, while ijk are used for spatial components or coordinates.

  2. 2.

    We are grateful to Zhirayr Avetisyan for pointing us out Theorem 3.68 in [7].

  3. 3.

    A covariant derivative \(\nabla \) on F is P-compatible if there exists a section \(A\in \varGamma (\mathrm {End}(F))\) such that \(\Box _\nabla +A=P\).

  4. 4.

    A partition of unity such as the one described exists on account of Theorem 3.1.4. In fact, after splitting the globally hyperbolic spacetime \({\varvec{M}}\) in the Cartesian product of \({\mathbb R}\) and a spacelike Cauchy surface \(\varSigma \) and for any choice of \(t_\pm \in {\mathbb R}\) with \(t_-<t_+\), one can introduce a partition of unity \(\{\chi _+,\chi _-\}\) on \({\mathbb R}\) such that \(\chi _\pm (t)=1\) for \(\pm t \ge \pm t_\pm \). Pulling this partition of unity back to \({\mathcal M}\) along the projection on the time factor \(t:{\mathcal M}\rightarrow {\mathbb R}\), one obtains a partition of unity on \({\mathcal M}\) of the sought type.

  5. 5.

    In Remark 3.3.3, we shall show that, in the case of the real scalar field, \(N=P(C^\infty _0({\mathcal M}))\). More generally, using the same argument, one can prove an analogous result for any field whose dynamics is ruled by a Green hyperbolic operator.

  6. 6.

    Even though the term “symplectic structure” is mathematically correct, it would be more appropriate to refer to this as a constant Poisson structure. Yet, we shall adhere to the common nomenclature of quantum field theory on curved spacetimes.

  7. 7.

    The function in the right-hand-side of the equation which defines L is the extension by zero to the whole spacetime of the function appearing in the left-hand-side.

  8. 8.

    The volume form \(d\varSigma \) on \(\varSigma \) is defined out of the structure induced on \(\varSigma \) itself as a submanifold of the globally hyperbolic spacetime \({\varvec{M}}\). More explicitly, on \(\varSigma \) we take the Riemannian metric \(g\vert _\varSigma \) and the orientation specified by the orientation and time-orientation of \({\varvec{M}}\). Then \(d\varSigma \) is the natural volume form defined out of these data.

  9. 9.

    Note that the Dirac representation T is usually regarded as a unitary representation of \(\mathrm {SL}(2,{\mathbb C})\) on \({\mathbb C}^4\), yet \(\mathrm {Spin}(1,3)\) is isomorphic to \(\mathrm {SL}(2,{\mathbb C})\) as a Lie group.

  10. 10.

    The sections on the right-hand-side in the definitions of \(L_\mathrm {s}\) and of \(L_\mathrm {c}\) are the extensions by zero to the whole spacetime of the sections which appear on the left-hand-side.

  11. 11.

    As usual, the component of the direct sum corresponding to the degree \(k=0\) is simply \({\mathbb C}\).

  12. 12.

    The differential form on the right-hand-side of the equation which defines L is the extension by zero to the whole spacetime of the differential form which appears on the left-hand-side.

References

  1. Araki, H.: On Quasifree States of CAR and Bogoliubov Automorphisms. Publ. RIMS Kyoto Univ. 6, 385 (1970/71)

    Google Scholar 

  2. Bär, C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Commun. Math. Phys. 333, 1585 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bär, C., Fredenhagen, K. (eds.): Quantum Field Theory on Curved Spacetimes: Concepts and Mathematical Foundations, 1st edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  4. Bär, C., Ginoux N.: CCR- versus CAR-quantization on curved spacetimes. In: Finster F. et al. (eds.) Quantum Field Theory and Gravity, pp. 183–206. Birkäuser, Basel (2012)

    Google Scholar 

  5. Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. In: Bär, C., Lohkamp, J., Schwarz, M. (eds.) Global Differential Geometry, pp. 359–400. Springer, Berlin (2012)

    Google Scholar 

  6. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, 1st edn. Eur. Math. Soc, Zürich (2007)

    Book  MATH  Google Scholar 

  7. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. 2nd edn. CRC (1996)

    Google Scholar 

  8. Benini, M., Dappiaggi, C., Hack, T.-P., Schenkel, A.: A \(C^*\)-algebra for quantized principal \(U(1)\)-connections on globally hyperbolic Lorentzian manifolds. Commun. Math. Phys. 332, 477 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Benini, M., Dappiaggi, C., Murro, S.: Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds. Commun. Math. Phys. 330, 123 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Benini, M., Dappiaggi, C., Schenkel, A.: Quantum field theories on affine bundles. Ann. Henry Poincaré 15, 171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernal, A.N., Sanchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bernal, A.N., Sanchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Borchers, H.J.: On structure of the algebra of field operators. Il Nuovo Cimento 24, 214 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bott, R., Tu, L.W.: Differential forms in algebraic topology, 1st edn. Springer, New York (1982)

    Book  MATH  Google Scholar 

  16. Dappiaggi, C.: Remarks on the Reeh-Schlieder property for higher spin free fields on curved spacetimes. Rev. Math. Phys. 23, 1035 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dappiaggi, C., Hack, T.-P., Pinamonti, N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dimock, J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4, 223 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 44, 4480 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Fewster, C.J., Schenkel, A.: Locally covariant quantum field theory with external sources. to appear in Ann. Henri Poincaré

    Google Scholar 

  25. Fewster, C.J., Verch, R.: A quantum weak energy inequality for Dirac fields in curved space-time. Commun. Math. Phys. 225, 331 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Friedlander, F.G.: The Wave Equation on a Curved Space-Time, 1st edn. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  27. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  28. Furlani, E.P.: Quantization of massive vector fields in curved space-time. J. Math. Phys. 40, 2611 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Hack, T.-P., Makedonski, M.: A No-Go theorem for the consistent quantization of Spin 3/2 Fields on general curved spacetimes. Phys. Lett. B 718, 1465 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  31. Hack, T.-P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen. Rel. Grav. 45, 877 (2013)

    Google Scholar 

  32. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  33. Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2nd edn. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  34. Hörmander, L.: The Analysis of Linear Partial Differential Operators II, 1st edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  35. Hörmander, L.: The Analysis of Linear Partial Differential Operators III, 1st edn. Springer, Berlin (1985)

    MATH  Google Scholar 

  36. Hörmander, L.: The Analysis of Linear Partial Differential Operators IV, 1st edn. Springer, Berlin (1985)

    MATH  Google Scholar 

  37. Husemoller, D.: Fibre Bundles, 3rd edn. Springer, New York (2004)

    MATH  Google Scholar 

  38. Isham, C.J.: Spinor fields in four-dimensional space-time. Proc. Roy. Soc. Lond. A 364, 591 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Jost, J.: Riemannian Geometry and Geometric Analysis, 6th edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  40. Khavkine, I.: Covariant phase space, constraints, gauge and the Peierls formula. Int. J. Mod. Phys. A 29(5), 1430009. arXiv:1402.1282 [math-ph] (2014)

  41. Khavkine, I.: Characteristics, Conal Geometry and Causality in Locally Covariant Field Theory. arXiv:1211.1914 [gr-qc]

  42. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry, 1st edn. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  43. Ozsváth, I., Schucking, E.: Gödel’s trip. Am. J. Phys. 71, 801 (2003)

    Article  ADS  Google Scholar 

  44. Parker, P.E.: On some theorems of Geroch and Stiefel. J. Math. Phys. 25, 597 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Pauli, W.: Contributions mathématiques à la théorie des matrices de Dirac. Ann. Inst. H. Poincaré 6, 109 (1936)

    MathSciNet  MATH  Google Scholar 

  46. Pfenning, M.J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class. Quant. Grav. 26, 135017 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Sanders, K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sanders, K.: A note on spacelike and timelike compactness. Class. Quant. Grav. 30, 115014 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law. Commun. Math. Phys. 328, 625 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Townsend, P.K.: Black holes: lecture notes. gr-qc/9707012

  51. Uhlmann, A.: Über die definition der quantenfelder nach Wightman und Haag. Wiss. Z. Karl-Marx-Univ. Leipzig. 11, 213 (1962)

    MathSciNet  MATH  Google Scholar 

  52. Wald, R.M.: General Relativity, 1st edn. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  53. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, 1st edn. The University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  54. Waldmann, S.: Geometric wave equations. arXiv:1208.4706 [math.DG]

  55. Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26(1), 1330012 (2014)

    Google Scholar 

Download references

Acknowledgments

The work of M.B. has been supported by a grant of the University of Pavia, which is gratefully acknowledged. C.D. is grateful to Zhirayr Avetisyan for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dappiaggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Benini, M., Dappiaggi, C. (2015). Models of Free Quantum Field Theories on Curved Backgrounds. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds) Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-21353-8_3

Download citation

Publish with us

Policies and ethics