Skip to main content

The Model-Free Prediction Principle

  • Chapter
Model-Free Prediction and Regression

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

Abstract

The problem of prediction is revisited with a view towards going beyond the typical nonparametric setting and reaching a fully model-free environment for predictive inference, i.e., point predictors and predictive intervals. A basic principle of Model-free prediction is laid out based on the notion of transforming a given setup into one that is easier to work with, namely i.i.d. or Gaussian. The Model-Free Prediction Principle is defined, and its applicability to different settings is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation i.i.d. \((\mu,\sigma ^{2})\) is shorthand for i.i.d. with mean μ and variance \(\sigma ^{2}.\)

  2. 2.

    Indeed, Politis (2013) employed definition (2.12) in a regression context; note, however, that when the responses Y 1, Y 2,  are independent, definitions (2.11) and (2.12) coincide since in this case the theoretical predictor \(\varPi (g,g_{n+1},\underline{Y }_{n},\mathbf{X}_{n+1},F_{n+1})\) does not depend on its third argument, namely \(\underline{Y }_{n}\), at all.

References

  • Akritas MG, VanKeilegom I (2001) Non-parametric estimation of the residual distribution. Scand J Stat 28(3):549–567

    Article  MathSciNet  MATH  Google Scholar 

  • Alonso AM, Peña D, Romo J (2002) Forecasting time series with sieve bootstrap. J Stat Plan Infer 100(1):1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185

    MathSciNet  Google Scholar 

  • Andersen TG, Bollerslev T (1998) Answering the sceptics: yes, standard volatility models do provide accurate forecasts. Int Econ Rev 39(4):885–905

    Article  MathSciNet  Google Scholar 

  • Andersen TG, Bollerslev T, Christoffersen PF, Diebold FX (2006) Volatility and correlation forecasting. In: Elliott G, Granger CWJ, Timmermann A (eds) Handbook of economic forecasting. North-Holland, Amsterdam, pp 778–878

    Google Scholar 

  • Andersen TG, Bollerslev T, Meddahi N (2004) Analytic evaluation of volatility forecasts. Int Econ Rev 45:1079–1110

    Article  MathSciNet  Google Scholar 

  • Atkinson AC (1985) Plots, transformations and regression. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Antoniadis A, Paparoditis E, Sapatinas T (2006) A functional wavelet-kernel approach for time series prediction. J R Stat Soc Ser B 68(5):837–857

    Article  MathSciNet  MATH  Google Scholar 

  • Bachelier L (1900) Theory of speculation. Reprinted in Cootner PH (ed) The random character of stock market prices. MIT Press, Cambridge, MA, pp 17–78, 1964

    Google Scholar 

  • Barndorff-Nielsen OE, Nielsen B, Shephard N, Ysusi C (1996) Measuring and forecasting financial variability using realized variance with and without a model. In: Harvey AC, Koopman SJ, Shephard N (eds) State space and unobserved components models: theory and applications. Cambridge University Press, Cambridge, pp 205–235

    Google Scholar 

  • Bartlett MS (1946) On the theoretical specification of sampling properties of autocorrelated time series. J R Stat Soc Suppl 8:27–41

    Article  MathSciNet  MATH  Google Scholar 

  • Beran R (1990) Calibrating prediction regions. J Am Stat Assoc 85:715–723

    Article  MathSciNet  MATH  Google Scholar 

  • Berkes I, Gombay E, Horvath L, Kokoszka P (2004) Sequential change-point detection in GARCH (p, q) models. Econ Theory 20(6):1140–1167

    Article  MathSciNet  MATH  Google Scholar 

  • Bertail P, Clémencon S (2006) Regenerative block bootstrap for Markov chains. Bernoulli 12(4):689–712

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel P, Gel YR (2011) Banded regularization of autocovariance matrices in application to parameter estimation and forecasting of time series. J R Stat Soc Ser B 73(5):711–728

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel P, Levina E (2008a) Regularized estimation of large covariance matrices. Ann Stat 36:199–227

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel P, Levina E (2008b) Covariance regularization via thresholding. Ann Stat 36:2577–2604

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel P, Li B (2006) Regularization in statistics. Test 15(2):271–344

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroscedasticity. J Econ 31:307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T, Chou R, Kroner K (1992) ARCH modelling in finance: a review of theory and empirical evidence. J Econ 52:5–60

    Article  MATH  Google Scholar 

  • Bose A (1988) Edgeworth correction by bootstrap in autoregressions. Ann Stat 16:1345–1741

    Article  MathSciNet  MATH  Google Scholar 

  • Bose A, Chatterjee S (2002) Comparison of bootstrap and jackknife variance estimators in linear regression: second order results. Stat Sin 12:575–598

    MathSciNet  MATH  Google Scholar 

  • Box GEP (1976) Science and statistics. J Am Stat Assoc 71(356):791–799

    Article  MathSciNet  MATH  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26:211–252

    MathSciNet  MATH  Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    MATH  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis, control, and forecasting. Holden Day, San Francisco

    MATH  Google Scholar 

  • Breidt FJ, Davis RA, Dunsmuir W (1995) Improved bootstrap prediction intervals for autoregressions. J Time Ser Anal 16(2):177–200

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    MathSciNet  MATH  Google Scholar 

  • Breiman L, Friedman J (1985) Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc 80:580–597

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1988) Simple consistent estimation of the coefficients of a linear filter. Stoch Process Appl 22:47–59

    Article  MathSciNet  MATH  Google Scholar 

  • Bühlmann P, van de Geer S (2011) Statistics for high-dimensional data. Springer, New York

    Book  MATH  Google Scholar 

  • Cai TT, Ren Z, Zhou HH (2013) Optimal rates of convergence for estimating Toeplitz covariance matrices. Probab Theory Relat Fields 156(1–2):101–143

    Article  MathSciNet  MATH  Google Scholar 

  • Cao R, Febrero-Bande M, Gonzalez-Manteiga W, Prada-Sanchez JM, GarcIa-Jurado I (1997) Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes. Commun Stat Simul Comput 26(3):961–978

    Article  MathSciNet  Google Scholar 

  • Carmack PS, Schucany WR, Spence JS, Gunst RF, Lin Q, Haley RW (2009) Far casting cross-validation. J Comput Graph Stat 18(4):879–893

    Article  MathSciNet  Google Scholar 

  • Carroll RJ, Ruppert D (1988) Transformations and weighting in regression. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Caroll RJ, Ruppert D (1991) Prediction and tolerance intervals with transformation and/or weighting. Technometrics 33(2):197–210

    Article  MathSciNet  Google Scholar 

  • Chatterjee S, Bose A (2005) Generalized bootstrap for estimating equations. Ann Stat 33:414–436

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Xu M, Wu W-B (2013) Covariance and precision matrix estimation for high-dimensional time series. Ann Stat 41(6):2994–3021

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng T-ZF, Ing C-K, Yu S-H (2015) Inverse moment bounds for sample autocovariance matrices based on detrended time series and their applications. Linear Algebra Appl (to appear)

    Google Scholar 

  • Choi B-S (1992) ARMA model identification. Springer, New York

    Book  MATH  Google Scholar 

  • Cox DR (1975) Prediction intervals and empirical Bayes confidence intervals. In: Gani J (eds) Perspectives in probability and statistics. Academic, London, pp 47–55

    Google Scholar 

  • Dahlhaus R (1997) Fitting time series models to nonstationary processes. Ann Stat 25(1):1–37

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus R (2012) Locally stationary processes. In: Handbook of statistics, vol 30. Elsevier, Amsterdam, pp 351–412

    Google Scholar 

  • Dahlhaus R, Subba Rao S (2006) Statistical inference for time-varying ARCH processes. Ann Stat 34(3):1075–1114

    Article  MathSciNet  MATH  Google Scholar 

  • Dai J, Sperlich S (2010) Simple and effective boundary correction for kernel densities and regression with an application to the world income and Engel curve estimation. Comput Stat Data Anal 54(11):2487–2497

    Article  MathSciNet  MATH  Google Scholar 

  • DasGupta A (2008) Asymptotic theory of statistics and probability. Springer, New York

    MATH  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Dawid AP (2004) Probability, causality, and the empirical world: a Bayes-de Finetti-Popper-Borel synthesis. Stat Sci 19(1):44–57

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye L (1981) Laws of the iterated logarithm for order statistics of uniform spacings. Ann Probab 9(6):860–867

    Article  MathSciNet  MATH  Google Scholar 

  • Dowla A, Paparoditis E, Politis DN (2003) Locally stationary processes and the local block bootstrap. In: Akritas MG, Politis DN (eds) Recent advances and trends in nonparametric statistics. Elsevier, Amsterdam, pp 437–444

    Chapter  Google Scholar 

  • Dowla A, Paparoditis E, Politis DN (2013) Local block bootstrap inference for trending time series. Metrika 76(6):733–764

    Article  MathSciNet  MATH  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78:316–331

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B (2014) Estimation and accuracy after model selection. J Am Stat Assoc 109:991–1007

    Article  MathSciNet  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Engle R (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica 50:987–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Fama EF (1965) The behaviour of stock market prices. J Bus 38:34–105

    Article  Google Scholar 

  • Fan J (1993) Local linear regression smoothers and their minimax efficiencies. Ann Stat 21(1):196–216

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, New York

    MATH  Google Scholar 

  • Fan J, Yao Q (2003) Nonlinear time series: nonparametric and parametric methods. Springer, New York

    Book  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Francq C, Zakoian JM (2011) GARCH models: structure, statistical inference and financial applications. Wiley, New York

    Google Scholar 

  • Franke J, Härdle W (1992) On bootstrapping kernel spectral estimates. Ann Stat 20:121–145

    Article  MathSciNet  MATH  Google Scholar 

  • Franke J, Kreiss J-P, Mammen E (2002) Bootstrap of kernel smoothing in nonlinear time series. Bernoulli 8(1):1–37

    MathSciNet  MATH  Google Scholar 

  • Freedman DA (1981) Bootstrapping regression models. Ann Stat 9:1218–1228

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman D (1984) On bootstrapping two-stage least-squares estimates in stationary linear models. Ann Stat 12:827–842

    Article  MathSciNet  MATH  Google Scholar 

  • Fryzlewicz P, Van Bellegem S, Von Sachs R (2003) Forecasting non-stationary time series by wavelet process modelling. Ann Inst Stat Math 55(4):737–764

    Article  MathSciNet  MATH  Google Scholar 

  • Gangopadhyay AK, Sen PK (1990) Bootstrap confidence intervals for conditional quantile functions. Sankhya Ser A 52(3):346–363

    MathSciNet  MATH  Google Scholar 

  • Geisser S (1993) Predictive inference: an introduction. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Gijbels I, Pope A, Wand MP (1999) Understanding exponential smoothing via kernel regression. J R Stat Soc Ser B 61:39–50

    Article  MathSciNet  MATH  Google Scholar 

  • Ghysels E, Santa-Clara P, Valkanov R (2006) Predicting volatility: getting the most out of return data sampled at different frequencies. J Econ 131(1–2):59–95

    Article  MathSciNet  Google Scholar 

  • Gouriéroux C (1997) ARCH models and financial applications. Springer, New York

    Book  MATH  Google Scholar 

  • Gray RM (2005) Toeplitz and circulant matrices: a review. Commun Inf Theory 2(3):155–239

    MATH  Google Scholar 

  • Grenander U, Szegö G (1958) Toeplitz forms and their applications, vol 321. University of California Press, Berkeley

    MATH  Google Scholar 

  • Hahn J (1995) Bootstrapping quantile regression estimators. Econ Theory 11(1):105–121

    Article  MathSciNet  Google Scholar 

  • Hall P (1992) The bootstrap and edgeworth expansion. Springer, New York

    Book  MATH  Google Scholar 

  • Hall P (1993) On Edgeworth expansion and bootstrap confidence bands in nonparametric curve estimation. J R Stat Soc Ser B 55:291–304

    MATH  Google Scholar 

  • Hall P, Wehrly TE (1991) A geometrical method for removing edge effects from kernel type nonparametric regression estimators. J Am Stat Assoc 86:665–672

    Article  MathSciNet  Google Scholar 

  • Hall P, Wolff RCL, Yao Q (1999) Methods for estimating a conditional distribution function. J Am Stat Assoc 94(445):154–163

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  • Hampel FR (1973) Robust estimation, a condensed partial survey. Z Wahrscheinlichkeitstheorie verwandte Gebiete 27:87–104

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen BE (2004) Nonparametric estimation of smooth conditional distributions. Working paper, Department of Economics, University of Wisconsin

    Google Scholar 

  • Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH (1,1)? J Appl Econ 20:873–889

    Article  MathSciNet  Google Scholar 

  • Hansen PR, Lunde A (2006) Consistent ranking of volatility models. J Econ 131:97–121

    Article  MathSciNet  Google Scholar 

  • Hansen PR, Lunde A, Nason JM (2003) Choosing the best volatility models: the model confidence set approach. Oxf Bull Econ Stat 65:839–861

    Article  Google Scholar 

  • Härdle W (1990) Applied nonparametric regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Härdle W, Bowman AW (1988) Bootstrapping in nonparametric regression: local adaptive smoothing and confidence bands. J Am Stat Assoc 83:102–110

    MathSciNet  MATH  Google Scholar 

  • Härdle W, Marron JS (1991) Bootstrap simultaneous error bars for nonparametric regression. Ann Stat 19:778–796

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W, Vieu P (1992) Kernel regression smoothing of time series. J Time Ser Anal 13:209–232

    Article  MathSciNet  MATH  Google Scholar 

  • Hart JD (1997) Nonparametric smoothing and lack-of-fit tests. Springer, New York

    Book  MATH  Google Scholar 

  • Hart JD, Yi S (1998) One-sided cross-validation. J Am Stat Assoc 93(442):620–631

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and predictions, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Hocking RR (1976) The analysis and selection of variables in linear regression. Biometrics 31(1):1–49

    Article  MathSciNet  MATH  Google Scholar 

  • Hong Y (1999) Hypothesis testing in time series via the empirical characteristic function: a generalized spectral density approach. J Am Stat Assoc 94:1201–1220

    Article  MathSciNet  MATH  Google Scholar 

  • Hong Y, White H (2005) Asymptotic distribution theory for nonparametric entropy measures of serial dependence. Econometrica 73(3):837–901

    Article  MathSciNet  MATH  Google Scholar 

  • Horowitz J (1998) Bootstrap methods for median regression models. Econometrica 66(6):1327–1351

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ (1973) Robust regression: asymptotics, conjectures and Monte Carlo. Ann Stat 1:799–821

    Article  MathSciNet  MATH  Google Scholar 

  • Hurvich CM, Zeger S (1987) Frequency domain bootstrap methods for time series. Technical Report, New York University, Graduate School of Business Administration

    Google Scholar 

  • Jentsch C, Politis DN (2015) Covariance matrix estimation and linear process bootstrap for multivariate time series of possibly increasing dimension. Ann Stat 43(3):1117–1140

    Article  MathSciNet  MATH  Google Scholar 

  • Kim TY, Cox DD (1996) Bandwidth selection in kernel smoothing of time series. J Time Ser Anal 17:49–63

    Article  MathSciNet  MATH  Google Scholar 

  • Kirch C, Politis DN (2011) TFT-Bootstrap: resampling time series in the frequency domain to obtain replicates in the time domain. Ann Stat 39(3):1427–1470

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kokoszka P, Leipus R (2000) Change-point estimation in ARCH models. Bernoulli 6(3):513–539

    Article  MathSciNet  MATH  Google Scholar 

  • Kokoszka P, Politis DN (2011) Nonlinearity of ARCH and stochastic volatility models and Bartlett’s formula. Probab Math Stat 31:47–59

    MathSciNet  MATH  Google Scholar 

  • Koopman SJ, Jungbacker B, Hol E (2005) Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements. J Empir Finance 12:445–475

    Article  Google Scholar 

  • Kreiss J-P, Paparoditis E (2011) Bootstrap methods for dependent data: a review. J Korean Stat Soc 40(4):357–378

    Article  MathSciNet  MATH  Google Scholar 

  • Kreiss J-P, Paparoditis E (2012) The hybrid wild bootstrap for time series. J Am Stat Assoc 107:1073–1084

    Article  MathSciNet  MATH  Google Scholar 

  • Kreiss J-P, Paparoditis E, Politis DN (2011) On the range of validity of the autoregressive sieve bootstrap. Ann Stat 39(4):2103–2130

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  MATH  Google Scholar 

  • Künsch H (1989) The jackknife and the bootstrap for general stationary observations. Ann Stat 17:1217–1241

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri SN (2003) A necessary and sufficient condition for asymptotic independence of discrete Fourier transforms under short-and long-range dependence. Ann Stat 31(2):613–641

    Article  MathSciNet  MATH  Google Scholar 

  • Lei J, Robins J, Wasserman L (2013) Distribution free prediction sets. J Am Stat Assoc 108:278–287

    Article  MathSciNet  MATH  Google Scholar 

  • Li Q, Racine JS (2007) Nonparametric econometrics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Linton OB, Chen R, Wang N, Härdle W (1997) An analysis of transformations for additive nonparametric regression. J Am Stat Assoc 92:1512–1521

    Article  MathSciNet  MATH  Google Scholar 

  • Linton OB, Sperlich S, van Keilegom I (2008) Estimation of a semiparametric transformation model. Ann Stat 36(2):686–718

    Article  MathSciNet  MATH  Google Scholar 

  • Loader C (1999) Local regression and likelihood. Springer, New York

    MATH  Google Scholar 

  • Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36:394–419

    Article  Google Scholar 

  • Maronna RA, Martin RD, Yohai VJ (2006) Robust statistics: theory and methods. Wiley, New York

    Book  MATH  Google Scholar 

  • Masarotto G (1990) Bootstrap prediction intervals for autoregressions. Int J Forecast 6(2):229–239

    Article  Google Scholar 

  • Masry E, Tjøstheim D (1995) Nonparametric estimation and identification of nonlinear ARCH time series. Econ Theory 11:258–289

    Article  MathSciNet  Google Scholar 

  • McCullagh P, Nelder J (1983) Generalized linear models. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • McMurry T, Politis DN (2008) Bootstrap confidence intervals in nonparametric regression with built-in bias correction. Stat Probab Lett 78:2463–2469

    Article  MathSciNet  MATH  Google Scholar 

  • McMurry T, Politis DN (2010) Banded and tapered estimates of autocovariance matrices and the linear process bootstrap. J Time Ser Anal 31:471–482 [Corrigendum: J Time Ser Anal 33, 2012]

    Google Scholar 

  • McMurry T, Politis DN (2015) High-dimensional autocovariance matrices and optimal linear prediction (with discussion). Electr J Stat 9:753–822

    Article  MathSciNet  MATH  Google Scholar 

  • Meddahi N (2001) An eigenfunction approach for volatility modeling. Technical report, CIRANO Working paper 2001s–70, University of Montreal

    Google Scholar 

  • Mikosch T, Starica C (2004) Changes of structure in financial time series and the GARCH model. Revstat Stat J 2(1):41–73

    MathSciNet  MATH  Google Scholar 

  • Nadaraya EA (1964) On estimating regression. Theory Probab Appl 9:141–142

    Article  MATH  Google Scholar 

  • Nelson D (1991) Conditional heteroscedasticity in asset returns: a new approach. Econometrica 59:347–370

    Article  MathSciNet  MATH  Google Scholar 

  • Neumann M, Polzehl J (1998) Simultaneous bootstrap confidence bands in nonparametric regression. J Nonparametr Stat 9:307–333

    Article  MathSciNet  MATH  Google Scholar 

  • Olive DJ (2007) Prediction intervals for regression models. Comput Stat Data Anal 51:3115–3122

    Article  MathSciNet  MATH  Google Scholar 

  • Pagan A, Ullah A (1999) Nonparametric econometrics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pan L, Politis DN (2014) Bootstrap prediction intervals for Markov processes. Discussion paper, Department of Economics, University of California, San Diego. Retrievable from http://escholarship.org/uc/item/7555757g. Accepted for publication in CSDA Annals of Computational and Financial Econometrics

  • Pan L, Politis DN (2015) Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions (with discussion). J Stat Plan Infer (to appear)

    Google Scholar 

  • Paparoditis E, Politis DN (1998) The backward local bootstrap for conditional predictive inference in nonlinear time series. In: Lipitakis EA (ed) Proceedings of the 4th Hellenic-European conference on computer mathematics and its applications (HERCMA’98). Lea Publishing, Athens, pp 467–470

    Google Scholar 

  • Paparoditis E, Politis DN (2001) A Markovian local resampling scheme for nonparametric estimators in time series analysis. Econ Theory 17(3):540–566

    Article  MathSciNet  MATH  Google Scholar 

  • Paparoditis E, Politis DN (2002a) The local bootstrap for Markov processes. J Stat Plan Infer 108(1):301–328

    Article  MathSciNet  MATH  Google Scholar 

  • Paparoditis E, Politis DN (2002b) Local block bootstrap. C R Acad Sci Paris Ser I 335:959–962

    Article  MathSciNet  MATH  Google Scholar 

  • Pascual L, Romo J, Ruiz E (2004) Bootstrap predictive inference for ARIMA processes. J Time Ser Anal 25(4):449–465

    Article  MathSciNet  MATH  Google Scholar 

  • Patel JK (1989) Prediction intervals: a review. Commun Stat Theory Methods 18:2393–2465

    Article  MathSciNet  MATH  Google Scholar 

  • Patton AJ (2011) Volatility forecast evaluation and comparison using imperfect volatility proxies. J Econ 160(1):246–256

    Article  MathSciNet  Google Scholar 

  • Politis DN (1998) Computer-intensive methods in statistical analysis. IEEE Signal Process Mag 15(1):39–55

    Article  Google Scholar 

  • Politis DN (2003a) A normalizing and variance-stabilizing transformation for financial time series. In: Akritas MG, Politis DN (eds) Recent advances and trends in nonparametric statistics. Elsevier, Amsterdam, pp 335–347

    Chapter  Google Scholar 

  • Politis DN (2003b) Adaptive bandwidth choice. J Nonparametr Stat 15(4–5):517–533

    Article  MathSciNet  MATH  Google Scholar 

  • Politis DN (2004) A heavy-tailed distribution for ARCH residuals with application to volatility prediction. Ann Econ Finance 5:283–298

    Google Scholar 

  • Politis DN (2007a) Model-free vs. model-based volatility prediction. J Financ Econ 5(3):358–389

    MathSciNet  Google Scholar 

  • Politis DN (2007b) Model-free prediction, vol LXII. Bulletin of the International Statistical Institute, Lisbon, pp 1391–1397

    Google Scholar 

  • Politis DN (2010) Model-free model-fitting and predictive distributions. Discussion paper, Department of Economics, University of California, San Diego. Retrievable from: http://escholarship.org/uc/item/67j6s174

  • Politis DN (2013) Model-free model-fitting and predictive distributions (with discussion). Test 22(2):183–250

    Article  MathSciNet  MATH  Google Scholar 

  • Politis DN (2014) Bootstrap confidence intervals in nonparametric regression without an additive model. In: Akritas MG, Lahiri SN, Politis DN (eds) Proceedings of the first conference of the international society for nonParametric statistics. Springer, New York, pp 271–282

    Google Scholar 

  • Politis DN, Romano JP (1992) A general resampling scheme for triangular arrays of alpha-mixing random variables with application to the problem of spectral density estimation. Ann Stat 20:1985–2007

    Article  MathSciNet  MATH  Google Scholar 

  • Politis DN, Romano JP (1994) The stationary bootstrap. J Am Stat Assoc 89(428):1303–1313

    Article  MathSciNet  MATH  Google Scholar 

  • Politis DN, Romano JP, Wolf M (1999) Subsampling. Springer, New York

    Book  MATH  Google Scholar 

  • Politis DN, Thomakos D (2008) Financial time series and volatility prediction using NoVaS transformations. In: Rapach DE, Wohar ME (eds) Forecasting in the presence of structural breaks and model uncertainty. Emerald Group Publishing, Bingley, pp 417–447

    Chapter  Google Scholar 

  • Politis DN, Thomakos DD (2012) NoVaS transformations: flexible inference for volatility forecasting. In: Chen X, Swanson N (eds) Recent advances and future directions in causality, prediction, and specification analysis: essays in honor of Halbert L. White Jr. Springer, New York, pp 489–528

    Google Scholar 

  • Pourahmadi M (1999) Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3):677–690

    Article  MathSciNet  MATH  Google Scholar 

  • Pourahmadi M (2011) Modeling covariance matrices: the GLM and regularization perspectives. Stat Sci 26(3):369–387

    Article  MathSciNet  MATH  Google Scholar 

  • Poon S, Granger C (2003) Forecasting volatility in financial markets: a review. J Econ Lit 41:478–539

    Article  Google Scholar 

  • Priestley MB (1965) Evolutionary spectra and non-stationary processes. J R Stat Soc Ser B 27:204–237

    MathSciNet  MATH  Google Scholar 

  • Priestley MB (1988) Nonlinear and nonstationary time series analysis. Academic, London

    Google Scholar 

  • Raïs N (1994) Méthodes de rééchantillonnage et de sous-échantillonnage pour des variables aléatoires dépendantes et spatiales. Ph.D. thesis, University of Montreal

    Google Scholar 

  • Rajarshi MB (1990) Bootstrap in Markov sequences based on estimates of transition density. Ann Inst Stat Math 42:253–268

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick S, Samorodnitsky G, Xue F (1999) How misleading can sample ACF’s of stable MA’s be? (Very!) Ann Appl Probab 9(3):797–817

    MathSciNet  MATH  Google Scholar 

  • Rissanen J, Barbosa L (1969) Properties of infinite covariance matrices and stability of optimum predictors. Inf Sci 1:221–236

    Article  MathSciNet  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    Article  MathSciNet  MATH  Google Scholar 

  • Ruppert D, Cline DH (1994) Bias reduction in kernel density estimation by smoothed empirical transformations. Ann Stat 22:185–210

    Article  MathSciNet  MATH  Google Scholar 

  • Schmoyer RL (1992) Asymptotically valid prediction intervals for linear models. Technometrics 34:399–408

    Article  MathSciNet  MATH  Google Scholar 

  • Schucany WR (2004) Kernel smoothers: an overview of curve estimators for the first graduate course in nonparametric statistics. Stat Sci 19:663–675

    Article  MathSciNet  MATH  Google Scholar 

  • Seber GAF, Lee AJ (2003) Linear regression analysis, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Shao J, Tu D (1995) The Jackknife and bootstrap. Springer, New York

    Book  MATH  Google Scholar 

  • Shapiro SS, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  MathSciNet  MATH  Google Scholar 

  • Shephard N (1996) Statistical aspects of ARCH and stochastic volatility. In: Cox DR, Hinkley DV, Barndorff-Nielsen OE (eds) Time series models in econometrics, finance and other fields. Chapman and Hall, London, pp 1–67

    Google Scholar 

  • Shi SG (1991) Local bootstrap. Ann Inst Stat Math 43:667–676

    Article  MathSciNet  MATH  Google Scholar 

  • Shmueli G (2010) To explain or to predict? Stat Sci 25:289–310

    Article  MathSciNet  MATH  Google Scholar 

  • Starica C, Granger C (2005) Nonstationarities in stock returns. Rev Econ Stat 87(3):503–522

    Article  Google Scholar 

  • Stine RA (1985) Bootstrap prediction intervals for regression. J Am Stat Assoc 80:1026–1031

    Article  MathSciNet  MATH  Google Scholar 

  • Stine RA (1987) Estimating properties of autoregressive forecasts. J Am Stat Assoc 82:1072–1078

    Article  MathSciNet  Google Scholar 

  • Thombs LA, Schucany WR (1990) Bootstrap prediction intervals for autoregression. J Am Stat Assoc 85:486–492

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R (1988) Estimating transformations for regression via additivity and variance stabilization. J Am Stat Assoc 83:394–405

    Article  MathSciNet  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Thomakos DD, Klepsch J, Politis DN (2015) Multivariate NoVaS and inference on conditional correlations. Working paper, Department of Economics, University of California, San Diego

    Google Scholar 

  • Wang L, Brown LD, Cai TT, Levine M (2008) Effect of mean on variance function estimation in nonparametric regression. Ann Stat 36:646–664

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Politis DN (2015) Asymptotic validity of bootstrap confidence intervals in nonparametric regression without an additive model. Working paper, Department of Mathematics, University of California, San Diego

    Google Scholar 

  • Watson GS (1964) Smooth regression analysis. Sankhya Ser A 26:359–372

    MathSciNet  MATH  Google Scholar 

  • Wolf M, Wunderli D (2015) Bootstrap joint prediction regions. J Time Ser Anal 36(3):352–376

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfowitz J (1957) The minimum distance method. Ann Math Stat 28:75–88

    Article  MathSciNet  MATH  Google Scholar 

  • Wu S, Harris TJ, McAuley KB (2007) The use of simplified or misspecified models: linear case. Can J Chem Eng 75:386–398

    Google Scholar 

  • Wu W-B, Pourahmadi M (2009) Banding sample autocovariance matrices of stationary processes. Stat Sin 19(4):1755–1768

    MathSciNet  MATH  Google Scholar 

  • Xiao H, Wu W-B (2012) Covariance matrix estimation for stationary time series. Ann Stat 40(1):466–493

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Wu W-B (2011) Testing parametric assumptions of trends of nonstationary time series. Biometrika 98(3):599–614

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Z, Wu W-B (2009) Local linear quantile estimation for non-stationary time series. Ann Stat 37:2696–2729

    Article  MATH  Google Scholar 

  • Zhou Z, Wu W-B (2010) Simultaneous inference of linear models with time-varying coefficients. J R Stat Soc Ser B 72:513–531

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author

About this chapter

Cite this chapter

Politis, D.N. (2015). The Model-Free Prediction Principle. In: Model-Free Prediction and Regression. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-21347-7_2

Download citation

Publish with us

Policies and ethics