Skip to main content

Optimization Methods for Medical Image Super Resolution Reconstruction

  • Chapter
  • First Online:
Applications of Intelligent Optimization in Biology and Medicine

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 96))

Abstract

Super-resolution (SR) concentrates on constructing a high-resolution (HR) image of a scene from two or more sets of low-resolution (LR) images of the same scene. It is the process of combining a sequence of low-resolution (LR) noisy blurred images to produce a higher-resolution image. The reconstruction of high-resolution images is computationally expensive. SR is defined to be an inverse problem that is well-known as ill-conditioned. The SR problem has been reformulated using optimization techniques to define a solution that is a close approximation of the true scene and less sensitive to errors in the observed images. This paper reviews the optimized SR reconstruction approaches and highlights its challenges and limitations. An experiment has been done to compare between bicubic, iterative back-projection (IBP), projected onto convex sets (POCS), total variation (TV) and Gradient descent via sparse representation. The experimental results show that Gradient descent via sparse representation outperforms other optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armato III, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., Kazerooni, E.A., MacMahon, H., van Beek, E.J.R., Yankelevitz, D., et al.: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38, 915–931 (2011)

    Article  Google Scholar 

  2. Babacan, S.D., Molina, R., Katsaggelos, AK.: Total variation super resolution using a variational approach. In: 15th IEEE International Conference on Image Processing, pp. 641–644, 12–15 Oct 2008

    Google Scholar 

  3. Bayarsaikhan, B., Kwon, Y., Kim, J.K.: Anisotropic total variation method for text image super-resolution. In: The Eighth IAPR International Workshop on Document Analysis Systems, pp. 473–479 (2008)

    Google Scholar 

  4. Capel, D., Zisserman, A.: Computer vision applied to super resolution. IEEE Signal Process. Mag. 20(3), 75–86 (2003)

    Article  Google Scholar 

  5. Chantas, G.K., Galatsanos, N.P., Woods, N.A.: Super-resolution based on fast registration and maximum a posteriori reconstruction. IEEE Trans. Image Process. 16(7), 1821–1830 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chavez-Roman, H., Ponomaryov, V.: Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation. IEEE Geosci. Remote Sens. Lett. 11(10), 1777–1781 (2014)

    Article  Google Scholar 

  7. Chen, X., Qi, C.: Low-rank neighbor embedding for single image super-resolution. IEEE Signal Proc. Let. 21(1), 79–82 (2014)

    Google Scholar 

  8. Chu, J., Liu, J., Qiao, J., Wang, X., Li, Y.: Gradient-based adaptive interpolation in super-resolution image restoration. In: 9th International Conference on Signal Processing, 2008. ICSP 2008, pp. 1027–1030, Oct 2008

    Google Scholar 

  9. Elad, M., Feuer, A.: Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  10. El-Khamy, S.E., Hadhoud, M.M., Dessouky, M.I., Salam, B.M., El-Samie, F.E.A.: A new super-resolution image reconstruction algorithm based on wavelet fusion. In: Proceedings of the Twenty-Second National Radio Science Conference (NRSC), pp. 195–204, 15–17 March 2005

    Google Scholar 

  11. Faramarzi, E., Rajan, D., Christensen, M.P.: Unified Blind method for multi-image super-resolution and single/multi-image Blur deconvolution. IEEE Trans. Image Process. 22(6), 2101–2114 (2013)

    Article  MathSciNet  Google Scholar 

  12. Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and challenges in super-resolution. Invited paper. Int. J. Imag. Syst. Technol., Spec. Issue High Resolut. Image Reconstr. 14(2), 47–57 (2004)

    Google Scholar 

  13. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fouad, M.M., Dansereau, R.M., Whitehead, AD.: Two-step super-resolution technique using bounded total variation and bisquare M-estimator under local illumination changes. In: 18th IEEE International Conference on Image Processing (ICIP), pp. 1357–1360, 11–14 Sept 2011

    Google Scholar 

  15. Gan, Z., Cui, Z., Chen, C., Zhu, X.: Adaptive joint nonlocal means denoising back projection for image super resolution. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 630–634, 15–18 Sept 2013

    Google Scholar 

  16. Georgis, G., Lentaris, G., Reisis, D.: Single-image super-resolution using low complexity adaptive iterative back-projection. In: 18th International Conference on Digital Signal Processing (DSP), pp. 16, 1–3 July 2013

    Google Scholar 

  17. Goto, T., Suzuki, S., Hirano, S., Sakurai, M., Nguyen, T.Q.: Fast and high quality learning-based super-resolution utilizing TV regularization method. In: 18th IEEE International Conference on Image Processing (ICIP), pp. 1185–1188, 11–14 Sept 2011

    Google Scholar 

  18. Han, Y. B., Wu, L.: Super resolution reconstruction of video sequence based on total variation. In: International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 575–578, Oct 2004

    Google Scholar 

  19. He, L., Qi, H., Zaretzki, R.: Non-parametric Bayesian dictionary learning for image super resolution. In: IEEE Future of Instrumentation International Workshop (FIIW), pp. 122–125, 2011

    Google Scholar 

  20. Jing, T., Kai-Kuang, M.: A survey on super-resolution imaging. SIViP 5(3), 329–342 (2011)

    Article  Google Scholar 

  21. Kang, L.-W., Chuang, B.-C., Hsu, C.-C., Lin, C.-W., Yeh, C.-H.: Self-learning-based low-quality single image superresolution. In: IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), vol. 2, pp. 224–229 (2013)

    Google Scholar 

  22. Katsuki, T., Torii, A., Inoue, M.: Posterior-mean super-resolution with a causal gaussian markov random field prior. IEEE Trans. Image Process. 21(7), 3182–3193 (2012)

    Article  MathSciNet  Google Scholar 

  23. Keren, D., Peleg, S., Brada, R.: Image sequence enhancement using sub-pixel displacements. In: Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’88), pp. 742–746 (1988)

    Google Scholar 

  24. Kumar, N., Deswal, P.K., Mehta, J., Sethi, A.: Neural network based single image super resolution. In: 11th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), pp. 213–218, 20–22 Sept 2012

    Google Scholar 

  25. Kumar, P.N., Narayana, K.L.: Implementation of an adaptive frame work based super-resolution under inaccurate motion registration. IJECT 5(3), 74–76 (2014)

    Google Scholar 

  26. Lai, R., Yang, Y., Zhou, H., Qin, H., Wang, B.-J.: Total variation regularized iterative back-projection method for single frame image super resolution. In: IEEE 11th International Conference on Signal Processing (ICSP), vol. 2, pp. 931–934, 21–25 Oct 2012

    Google Scholar 

  27. Li, H., Lam, K.-M.: Guided iterative back-projection scheme for single-image super-resolution. In: IEEE Global High Tech Congress on Electronics (GHTCE), pp. 175–180, Nov 2013

    Google Scholar 

  28. Lian, H.: Variational local structure estimation for image super-resolution. In: IEEE International Conference on Image Processing, pp. 1721–1724, 8–11 Oct 2006

    Google Scholar 

  29. Lucchese, L., Doretto, G., Cortelazzo, G.: A frequency domain technique for range data registration. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1468–1484 (2002)

    Article  Google Scholar 

  30. Lucchese, L., Cortelazzo, G.: A noise-robust frequency domain technique for estimating planar roto-translations. IEEE Trans. Signal Process. 48(6), 1769–1786 (2000)

    Article  Google Scholar 

  31. Ma, Y.J., Zhang, H., Xue, Y., Zhang, S.: Super—Resoultion Image reconstruction based on K-Means-Markov-Network. In: 5th International Conference on Natural Computation (ICNC), pp. 316–318 (2009)

    Google Scholar 

  32. Marcel, B., Briot, M., Murrieta, R.: Calcul de translation et rotation par la transformation de Fourier. Traitement du Signal 14(2), 135–149 (1997)

    MATH  Google Scholar 

  33. Moustafa, M., Ebied, H.M., Helmy, A.: Analysis of shift estimation techniques of super resolution applied to satellite images. In: 2013 8th International Conference on Computer Engineering and Systems (ICCES), pp. 233–238 (2013)

    Google Scholar 

  34. Nayef, N., Chazalon, J., Gomez-Kramer, P., Ogier, J.-M.: Efficient example-based super-resolution of single text images based on selective patch processing. In: 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 227–231, 7–10 April 2014

    Google Scholar 

  35. Ng, M.K., Shen, H., Lam, E.Y., Zhang, L.: A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video. EURASIP J. Adv. Signal Process. 2007, 1–15 (2007)

    Google Scholar 

  36. Oskoui-Fard, P., Stark, H.: Tomographic image reconstruction using the theory of convex projections. IEEE Trans. Med. Imaging 1, 45–58 (1988)

    Article  Google Scholar 

  37. Pan, M.-C., Lettington, A.H., Efficient method for improving Poisson MAP super-resolution. Electron. Lett. 35(10), 803–805 (1999)

    Google Scholar 

  38. Panchal, N., Limbasiya, B., Prajapati, A.: Survey on multi-frame image super-resolution. Int. J. Sci. Technol. Res. 2(11) (2013)

    Google Scholar 

  39. Park, J., Kwon, Y., Kim, J.H.: An example-based prior model for text image super-resolution. In: 8th International Conference Proceedings on Document Analysis and Recognition, pp. 374–378, 29 Aug–1 Sept 2005

    Google Scholar 

  40. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Proces. Mag. 20, 21–36 (2003)

    Google Scholar 

  41. Ramakanth, S.A., Babu, R.V.: Super resolution using a single image dictionary. In: IEEE International Conference on Electronics, Computing and Communication Technologies (IEEE CONECCT), pp. 1–6, 6–7 Jan 2014

    Google Scholar 

  42. Rasti, P., Demirel, H., Anbarjafari, G.: Image resolution enhancement by using interpolation followed by iterative back projection. In: 21st International on Conference Signal Processing and Communications Applications (SIU), pp. 1–4, April 2013

    Google Scholar 

  43. Rasti, P., Demirel, H., Anbarjafari, G.: Improved Iterative Back Projection for video super-resolution. In: Signal Processing and Communications Applications Conference (SIU), pp. 552–555, April 2014

    Google Scholar 

  44. Rasti, P., Demirel, H., Anbarjafari, G.: Iterative back projection based image resolution enhancement. In: 8th Iranian Conference on Machine Vision and Image Processing (MVIP), pp. 237–240, Sept 2013

    Google Scholar 

  45. Robinson, M.D., Toth, C.A., Lo, J.Y., Farsiu, S.: Efficient Fourier-Wavelet super-resolution. IEEE Trans. Image Process. 19(10), 2669–2681 (2010)

    Article  MathSciNet  Google Scholar 

  46. Rochefort, G., Champagnat, F., Le Besnerais, G., Giovannelli, J.-F.: An improved observation model for super-resolution under affine motion. IEEE Trans. Image Process. 15(11), 3325–3337 (2006)

    Google Scholar 

  47. Sadaka, N.G., Karam, L.J.: Super-resolution using a Wavelet-based adaptive wiener filter. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 3309–3312, 26–29 Sept. 2010

    Google Scholar 

  48. Sakurai, M., Sakuta, Y., Watanabe, M., Goto, T., Hirano, S.: Super-resolution utilizing total variation regularization and a shock filter. In: 19th IEEE International Conference on Image Processing (ICIP), pp. 2221–2224, Sept. 30 2012–Oct 3 2012

    Google Scholar 

  49. Shen, H., Zhang, L., Huang, B., Li, P.: A MAP approach for joint motion estimation, segmentation, and super resolution. IEEE Trans. Image Proc. 16(2), 479–490 (2007)

    Google Scholar 

  50. Song, H., He, X., Chen, W., Sun, Y.: An Improved iterative back-projection algorithm for video super-resolution reconstruction. In: Symposium on Photonics and Optoelectronic (SOPO), pp. 1–4, June 2010

    Google Scholar 

  51. Suzuki, S., Yoshikawa, A., Goto, T., Hirano, S., Sakurai, M.: New learning-based super resolution utilizing total variation regularization method. In: IEEE International Conference on Consumer Electronics (ICCE), pp. 253–254, 9–12 Jan 2011

    Google Scholar 

  52. Toronto, N., Morse, B.S., Seppi, K., Ventura, D.: Super-resolution via recapture and Bayesian effect modeling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 2388–2395, 2009

    Google Scholar 

  53. Tsai, R.Y., Huang, T.S.: Multiframe image restoration and registration. In: Huang, T.S. (ed.) Advances in Computer Vision and Image Processing. JAI Press Inc. London (1984)

    Google Scholar 

  54. Vandewalle, P., Sbaiz, L., Vandewalle, J., Vetterli, M.: Aliasing is good for you: joint registration and reconstruction for super-resolution. Technical Report, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2006)

    Google Scholar 

  55. Vandewalle, P., Sbaiz, L., Vandewalle, J., Vetterli, M.: How to take advantage of aliasing in bandlimited signals. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, vol. 3, pp. 948–951 (2004)

    Google Scholar 

  56. Vandewalle, P., Sbaiz, L., Vetterli, M., Sustrunk, S.: Super-resolution from highly undersampled images. In: Proceedings of the IEEE International Conference Image Processing, vol. 1, pp. 889–892 (2005)

    Google Scholar 

  57. Vandewalle, P., Süsstrunk, S., Vetterli, M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP J. Appl. Sig. Process. 71459, 1–14 (2006)

    Article  MATH  Google Scholar 

  58. Vandewalle, P., Sbaiz, L., Vandewalle, J., Vetterli, M.: Super-resolution from unregistered and totally aliased signals using subspace methods. IEEE Trans. Signal Process. 55(7), 3687–3703 (2007)

    Article  MathSciNet  Google Scholar 

  59. Wan, B., Meng, L., Ming, D., Qi, H., Hu, Y., Luk, K.D.K.: Video image super-resolution restoration based on iterative back-projection algorithm. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA’09), pp. 46–49, 11–13 May 2009

    Google Scholar 

  60. Wan, B., Zeng, H., Yi, W., Ma, L., Xu, R., Zheng, X., Bai, Y., Qi, H., Ming, D., Wang, W.: Super resolution reconstruction based on total variation regularization. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1194–1199, 14–18 Dec 2010

    Google Scholar 

  61. Wang, Q., Tang, X., Shum, H., Patch based blind image super resolution. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 709–716, Oct 2005

    Google Scholar 

  62. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  63. Watanabe, M., Sakuta, Y., Goto, T., Hirano, S., Sakurai, M.: Super-resolution image processing with total variation regularization and shock filters. In: IEEE 1st Global Conference on Consumer Electronics (GCCE), pp. 570–571, 2–5 Oct 2012

    Google Scholar 

  64. Wei, X., Feiyan, Z., Hao, C., Qianqing, Q.: Blind super-resolution image reconstruction based on POCS model. In: International Conference on Measuring Technology and Mechatronics Automation, 2009 (ICMTMA’09)., vol. 1, pp. 437–440, April 2009

    Google Scholar 

  65. Xu, Z.G., Su, X.Q., Zhang, Z.P.: Multi-frame image super-resolution by total-variation regularization. J. Inf. Comput. Sci. 9(4), 945–953 (2012)

    Google Scholar 

  66. Yang, M.-C., Wang, Y.-C.F.: A self-learning approach to single image super-resolution. IEEE Trans. Multimedia 15(3), 498–508 (2013)

    Google Scholar 

  67. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation, Image Process. IEEE Trans. 19(11), 2861–2873 (2010)

    Google Scholar 

  68. Yoshikawa, A., Suzuki, S., Goto, T., Hirano, S., Sakurai, M.: Super resolution image reconstruction using total variation regularization and learning-based method. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 1993–1996, 26–29 Sept 2010

    Google Scholar 

  69. Yu, J., Gao, X., Tao, D., Li, X., Zhang, K.: A Unified learning framework for single image super-resolution. In: IEEE Transactions on Neural Networks and Learning Systems, 25(4), pp. 780, 792, April 2014

    Google Scholar 

  70. Yuan, Q., Zhang, L., Shen, H.: Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans. Circ. Syst. Video Technol. 22(3), 379–392 (2012)

    Google Scholar 

  71. Yuan, T., Zhou, F., Yang, W., Liao, Q.: Image super-resolution via Kernel regression of sparse coefficients. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5794–5798, 4–9 May 2014

    Google Scholar 

  72. Zhou, F., Yang, W., Liao, Q.: Single image super-resolution using incoherent sub-dictionaries learning. IEEE Trans. Consum. Electorn. 58(3), 891–897 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Tolba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moustafa, M., Ebied, H.M., Helmy, A., Nazamy, T.M., Tolba, M.F. (2016). Optimization Methods for Medical Image Super Resolution Reconstruction. In: Hassanien, AE., Grosan, C., Fahmy Tolba, M. (eds) Applications of Intelligent Optimization in Biology and Medicine. Intelligent Systems Reference Library, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-21212-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21212-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21211-1

  • Online ISBN: 978-3-319-21212-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics