Skip to main content

Silicon Technologies for Nanoscale Device Packaging

  • Conference paper
  • First Online:
Nanopackaging: From Nanomaterials to the Atomic Scale

Abstract

We present our recent developments on silicon technologies dedicated to the packaging of nano-objects/nano-devices. These technologies aim at both protecting and electrically connecting a nanoscale device positioned on a perfect Si(001)-(2 × 1):H surface smoothed thanks to a 950 °C thermal treatment. The nano-device is connected to nanopads implanted on the silicon surface. Each nanopad is linked to a nanovia which is locally achieved by etching and filling processes operated in a FIB (Focused Ion Beam) equipment. Impacts of the FIB process on via morphology and properties are depicted. Nanopads are fabricated through the local implantation of arsenic, and the effect of the surface smoothing thermal treatment on the dopants diffusion length is estimated by simulation and then experimentally explored. Key process steps such as the etching of a deep cavity and the surface protection with a temporary cap are also described, and a first assembly consisting in a substrate equipped with nanopads and directly bonded with a cap substrate is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knickerbocker, J.U., Andry, P.S., Dang, B., Horton, R.R., Interrante, M.J., Patel, C.S., Polastre, R.J., Sakuma, K., Sirdeshmukh, R., Sprogis, E.J., Sri-Jayantha, S.M., Stephens, A.M., Topol, A.W., Tsang, C.K., Webb, B.C., Wright, S.L.: Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008)

    Article  Google Scholar 

  2. Garrou, P., Koyanagi, M., Ramm, P.: Handbook of 3D Integration. 3D Process Technology, vol. 3. Wiley, New York (2014)

    Google Scholar 

  3. Lau, J.H: Evolution, challenge, and outlook of TSV (through-silicon via) and 3D IC/Si integration. Keynote at IEEE Japan ICEP, 13–15 (2011)

    Google Scholar 

  4. Lau, J.H: Evolution, challenge, and outlook of TSV (through-silicon via) and 3D IC/Si integration. In: Proceedings of 2011 International Symposium on Advanced Packaging Materials (APM), pp. 462–488 (2011)

    Google Scholar 

  5. Gupta, A., Kannan, K., Kim, B., Mohammed, E., Ahn, B.: Development of novel carbon nanotube TSV technology. In: 2010 Electronic Components and Technology Conference, pp. 1699–1702 (2010)

    Google Scholar 

  6. Wang, T., Jeppson, K., Olofsson, N., Campbell, E., Liu, Y.: Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology 20, 485203 (2009). doi:10.1088/0957-4484/20/48/485203

    Article  Google Scholar 

  7. Wang, T., Jeppson, K., Ye, L., Liu, Y.: Carbon-nanotube through-silicon via interconnects for three-dimensional integration. Small X(XX), 1–5 (2011)

    Google Scholar 

  8. Wang, T., Chen, S., Jiang, D., Fu, Y., Jeppson, K., Ye, L., Liu, L.: Through-silicon vias filled with densified and transferred carbon nanotube forests. IEEE Electron Device Lett. 33(3), 420–422 (2012)

    Article  Google Scholar 

  9. Zhao, W.S., Yin, W.Y., Guo, Y.X.: Electromagnetic compatibility-oriented study on through silicon single-walled carbon nanotube bundle via (TS-SWCNTBV) arrays. IEEE Trans. Electromagn. Compat. 54(1), 149–157 (2012)

    Article  Google Scholar 

  10. Xie, R., Zhang, C., Van der Veen, M.H., Arstila, K., Hantschel, T., Chen, B., Zhong, G., Robertson, J.: Carbon nanotube growth for through silicon via application. Nanotechnology 24,125603 (2013). doi:10.1088/0957-4484/24/12/125603

  11. Morris, J.E. (ed.): Nanopackaging: nanotechnologies and electronics packaging. Springer, Berlin (2008)

    Google Scholar 

  12. Morris, J.E.: Nanotechnology materials for electronics reliability. In: 31st International Spring Seminar on Electronics Technology. ISSE’08, vol. C013, pp. 211–215 (2008)

    Google Scholar 

  13. Schwarzbauer, H., Kuhnert, R.: Novel large area joining technique for improved power device performance. In: Proceedings of Industry Applications Society Annual Meeting, vol. 2, pp. 1348–1351 (1989)

    Google Scholar 

  14. Zhang, Z.Z., Lu, G.Q.: Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow. IEEE Trans. Electron. Packag. Manuf. 25(4), 279–283 (2002)

    Article  CAS  Google Scholar 

  15. Bai, J.G., Zhang, Z.Z., Calata, J.N., Lu, G.Q.: Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29(3), 589–593 (2006)

    Article  CAS  Google Scholar 

  16. Göbl, C., Faltenbacher, J.: Low temperature sinter technology die attachment for power electronic applications. In: Proceedings of CIPS 2010, 16–18 March 2010, Nuremberg/Germany, Paper 10.1 (2010)

    Google Scholar 

  17. Lei, T.G., Calata, J.N., Lu, G.Q., Chen, X., Luo, S.: Low-temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips. IEEE Trans. Compon. Packag. Technol. 33(1), 98–104 (2010)

    Article  CAS  Google Scholar 

  18. Zheng, H., Berry, D., Calata, J.N., Ngo, K.D.T., Luo, S., Lu, G.Q.: Low-pressure joining of large-area devices on copper using nanosilver paste. IEEE Trans. Compon. Packag. Manuf. Technol. 3(6), 915–922 (2013)

    Article  CAS  Google Scholar 

  19. Ishida, H., Ogashiwa, T., Yazaki, T., Ikoma, T., Nishimori, T., Kusamori, H., Mizuno, J.: Low-temperature wafer bonding for MEMS hermetic packaging using sub-micron Au particles. Trans. Jpn. Inst. Electron. Packag. 3(1), 62–67 (2010)

    Article  CAS  Google Scholar 

  20. Joachim, C. (ed.): Atomic Scale Interconnection Machines. Advances in Atom and Single Molecule Machines. Springer, Berlin (2012)

    Google Scholar 

  21. Lwin, M.H.T., Tun, T.N., Kim, H.H., Kajen, R.S., Chandrasekhar, N., Joachim, C.: Silicon on insulator nanoscale backside interconnects for atomic and molecular scale circuits. J. Vac. Sci. Technol., B 28, 978–984 (2010). doi:10.1116/1.3484248

    Article  CAS  Google Scholar 

  22. Le Gac, G., Audoit, G., Thuaire, A., Moriceau, H., Baillin, X.: Nanovias FIB-etching and filling in a micro-nano interposer for molecular electronics. In: Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012, vol. 2, p. 539 (2012)

    Google Scholar 

  23. Niklaus, F., Stemme, G., Lu, J.-Q., Gutmann, R.J.: Adhesive wafer bonding. J. Appl. Phys. 99, 031101 (2006). doi:10.1063/1.2168512

    Article  Google Scholar 

  24. Hartmann, J.M., Loup, V., Rolland, G., Holliger, P., Laugier, F., Vannuffel, C., Séméria, M.-N.: SiGe growth kinetics and doping in reduced pressure-chemical vapor deposition. J. Cryst. Growth 236, 10–20 (2002)

    Article  CAS  Google Scholar 

  25. Kolmer, M., Godlewski, S., Zuzak, R., Wojtaszek, M., Rauer, C., Thuaire, A., Hartmann, J.M., Moriceau, H., Joachim, C., Szymonski, M.: Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(0 0 1) wafers processed and nanopackaged in a clean room environment. Appl. Surf. Sci. 288, 83–89 (2014)

    Article  CAS  Google Scholar 

  26. Rauer, C., Rieutord, F., Hartmann, J.M., Charvet, A.-M., Fournel, F., Mariolle, D., Morales, C., Moriceau, H.: Hydrophobic direct bonding of silicon reconstructed surfaces. Microsyst. Technol. 19, 675–679 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Community (AtMol project) under grant agreement No 270028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Thuaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Thuaire, A. et al. (2015). Silicon Technologies for Nanoscale Device Packaging . In: Baillin, X., Joachim, C., Poupon, G. (eds) Nanopackaging: From Nanomaterials to the Atomic Scale. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-21194-7_8

Download citation

Publish with us

Policies and ethics