Skip to main content

Abstract

The data transmission, especially from an implant to an external unit, is a crucial issue to be solved in the remotely-powered implantable systems due to the limited power budget of the implantable system. The simplest scenario which also offers a low power consumption in the implantable system, is to use the same channel with remote powering. However, the performance of the remote powering decreases during communication. Therefore, a Figure-of-Merit (FoM) is proposed to compare the effect of the communications on the remote powering performance. The uplink data is transmitted by using a second channel to achieve reliable communication since the animal moves freely in the living cage. A low-power transmitter is implemented and a custom designed receiver is realized. For the downlink communication, the commands that are sent by the external unit are received and demodulated by a PPM demodulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Karthaus, M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7- μW minimum RF input power. IEEE J. Solid-State Circuits 38(10), 1602–1608 (2003)

    Google Scholar 

  2. Z. Tang, B. Smith, J.H. Schild, P.H. Peckham, Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 42(5), 524–528 (1995)

    Article  Google Scholar 

  3. K. Van Schuylenbergh, R. Puers, Inductive Powering Basic Theory and Application to Biomedical Systems (Springer, Dordrecht, 2009)

    Google Scholar 

  4. O. Atasoy, C. Dehollain, A study for remote powering of a knee prosthesis through inductive link, in 2010 Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Berlin (2010), pp. 1–4

    Google Scholar 

  5. B.P. Lathi, Modern Digital and Analog Communication Systems, 3rd edn. (Oxford University Press, New York, 1998)

    Google Scholar 

  6. C.M. Zierhofer, E.S. Hochmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 43(7), 708–714 (1996)

    Article  Google Scholar 

  7. M. Gossar, H. Witschnig, H. Enzinger, Parameter analysis and reader architectures for broadband 13.56 MHz RFID systems, in 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), Anaheim (2010), pp. 1524–1527

    Google Scholar 

  8. R.J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd edn. (IEEE, Piscataway/Wiley, Hoboken, 2010)

    Book  Google Scholar 

  9. P. Upadhyaya, M. Rajashekharaiah, D. Heo, D.M. Rector, Y.-J.E. Chen, Low power and low phase noise 5.7 ghz LC VCO in OOK transmitter for neurosensory application, in 2005 IEEE MTT-S International Microwave Symposium Digest, Long Beach (IEEE, 2005), Long Beach, pp. 1539–1542

    Google Scholar 

  10. J. Ryu, M. Kim, J. Lee, B.-S. Kim, M.-Q. Lee, S. Nam, Low power OOK transmitter for wireless capsule endoscope, in IEEE/MTT-S International Microwave Symposium, Honolulu (IEEE, 2007), pp. 855–858

    Google Scholar 

  11. N. Panitantum, K. Mayaram, T.S. Fiez, A 900-MHz low-power transmitter with fast frequency calibration for wireless sensor networks, in IEEE Custom Integrated Circuits Conference, 2008. CICC 2008, San Jose (IEEE, 2008), pp. 595–598

    Google Scholar 

  12. J. Jung, S. Zhu, P. Liu, Y. Chen, D. Heo, 22-pJ/bit energy-efficient 2.4-GHz implantable OOK transmitter for wireless biotelemetry systems: in vitro experiments using rat skin-mimic. IEEE Trans. Microw. Theory Tech. 58(12), 4102–4111 (2010)

    Google Scholar 

  13. ERC-REC 70-03, Non-spesific Short Range Devices. Annex 1, Oct. 2012

    Google Scholar 

  14. R.R. Harrison, P.T. Watkins, R.J. Kier, R.O. Lovejoy, D.J. Black, B. Greger, F. Solzbacher, A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits 42(1), 123–133 (2007)

    Article  Google Scholar 

  15. N. Chaimanonart, D.J. Young, A wireless batteryless in vivo EKG and body temperature sensing microsystem with adaptive RF powering for genetically engineered mice monitoring, in International Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009, Denver (2009), pp. 1473–1476

    Google Scholar 

  16. J.L. Bohorquez, A.P. Chandrakasan, J.L. Dawson, A 350 μW CMOS MSK transmitter and 400 μW OOK super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circuits 44(4), 1248–1259 (2009)

    Article  Google Scholar 

  17. S. Yoon, LC-tank CMOS voltage-controlled oscillators using high quality inductors embedded in advanced packaging technologies. Ph.D. thesis, EPFL, Atlanta, 2004

    Google Scholar 

  18. E.G. Kilinc, M.A. Ghanad, F. Maloberti, C. Dehollain, A remotely powered implantable biomedical system with location detector. IEEE Trans. Biomed. Circuits Syst. 9(1), 113–123 (2015)

    Article  Google Scholar 

  19. J. Pandey, Y.-T. Liao, A. Lingley, R. Mirjalili, B. Parviz, B.P. Otis, A fully integrated RF-powered contact lens with a single element display. IEEE Trans. Biomed. Circuits Syst. 4(6), 454–461 (2010)

    Article  Google Scholar 

  20. Abracon, Corp., USA, AFS869S3 – 869 MHz SAW filter. http://www.abracon.com

  21. Avago Technologies, Limited, USA, MGA-31589 – 0.5 W high gain driver amplifier. http://www.avagotech.com/

  22. Analog Devices, Inc., USA, ADL5513 – 1 MHz to 4 GHz, 80 dB logarithmic detector/controller. http://www.analog.com

  23. Texas Instruments, Inc., USA. TLV3501 – 4.5 ns rail-to-rail, high-speed comparator in microsize packages. http://www.ti.com

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kilinc, E.G., Dehollain, C., Maloberti, F. (2016). Wireless Communication. In: Remote Powering and Data Communication for Implanted Biomedical Systems. Analog Circuits and Signal Processing, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-21179-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21179-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21178-7

  • Online ISBN: 978-3-319-21179-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics