Skip to main content

Clinical Success of Adoptive Cell Transfer Therapy Using Tumor Infiltrating Lymphocytes

  • Chapter
Book cover Developments in T Cell Based Cancer Immunotherapies

Abstract

One of the hallmarks of cancer is the infiltration of all tumors (both primary and metastatic sites) with immune cells composed of lymphocytes and myeloid cells to various extents. This is indicative of the intrinsic inflammatory nature of all tumors as “invaders” in resident normal tissues causing local immune activation and immune cell recruitment. In most cases, a cascade of events sets in motion immune responses that drive innate immunity at the tumor site which then drives adaptive responses mediated by antigen-specific T cells. Tumors are infiltrated to various degrees with previously activated CD8+ and CD4+ T cells that are products of this immune response. These cells, also called “tumor-infiltrating lymphocytes” (TIL) have emerged as critical factors controlling cancer growth at localized tumor sites by recognizing not only over-expressed self-antigens, but also mutated neo-antigens specific for each patient for which immune tolerance does not exist. These are emerging to be the most powerful tumor antigens recognized by TIL. Many studies have now shown that increased T-cell infiltration into tumors at different disease stages is correlated with increased survival for many different type of cancers. Harnessing the intrinsic effector properties and antigen specificity of these TIL has emerged over a number of decades of dedicated pre-clinical and clinical research as a powerful approach to cancer immunotherapy through the adoptive transfer of TIL expanded ex vivo followed by re-infusion into the patient. This form of adoptive cell therapy has been highly developed to treat metastatic melanoma with consistent response rates ranging from 45 to 50 % and complete durable response rates as high as 20 %. These results, together with advances in methods to expand TIL ex vivo to therapeutic numbers, has set the stage now for further developing TIL adoptive cell therapy as a standard-of-care for melanoma through practical commercial manufacturing systems. In this chapter, we introduce T-cell therapy and comprehensively describe TIL therapy for metastatic melanoma, including a discussion of how TIL are expanded for therapy, outstanding technical and biological questions relating to T-cell differentiation being addressed in the field, and the growing area of predictive biomarker research that is revealing new mechanistic insights into how TIL work and opening up the possibility to select patients for T-cell therapy by interrogating factors within the tumor microenvironment. Overall, TIL therapy for melanoma has proven to be an effective regimen to treat melanoma in multiple clinical centers now across the world, especially in a salvage setting when other front-line therapies have failed, including T-cell checkpoint blockade, such as anti-CTLA-4, anti-PD-1, and anti-PD-L1. A number of cytokine signaling mechanisms and genes regulating the differentiation of TIL in culture towards end-stage, senescent cells, especially CD8+ T cells, have been elucidated allowing us to manipulate these pathways during ex vivo cell expansion to keep the cells “younger” and less differentiated when infused to ensure improved persistence in vivo. A number of promising biomarkers are being discovered in the original tumors used to expand TIL for therapy. These markers, together with other patient-specific biomarkers can be incorporated into biomarker signatures allowing for accurate selection of patients most likely to respond to therapy. All these developments, together with newer ways to selectively expand more tumor-specific TIL, will push this cell therapy more and more into the mainstream cancer care as part of growing “immunological toolbox” for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiavoni G, Mattei F, Gabriele L (2013) Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol 4:483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL (2007) A unique subset of CD4 + CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345–4354

    Article  CAS  PubMed  Google Scholar 

  3. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27:635–646

    Article  CAS  PubMed  Google Scholar 

  4. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR (2006) T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol 177:6780–6786

    Article  CAS  PubMed  Google Scholar 

  5. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    Article  CAS  PubMed  Google Scholar 

  6. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797

    Article  CAS  PubMed  Google Scholar 

  7. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  CAS  PubMed  Google Scholar 

  9. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM, Chen SH (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70:99–108

    Article  CAS  PubMed  Google Scholar 

  10. Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. 1983. Am J Med Sci (262):3–11

    Google Scholar 

  11. Coley WB (1896) Further observations upon the treatment of malignant tumors with the toxins of erysipelas and Bacillus prodigiosus with a report of 160 cases. Bull Johns Hopkins Hosp 65:157–162

    Google Scholar 

  12. Coley WB (1906) Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and Bacillus prodigious. Am J Med Sci 131:375–430.

    Google Scholar 

  13. Nauts HC, Fowler GA, Bogatko FH (1953) A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination. Acta Med Scand Suppl 276:1–103

    Google Scholar 

  14. Hoffman RM (2012) The preclinical discovery of bacterial therapy for the treatment of metastatic cancer with unique advantages. Expert Opin Drug Discov 7:73–83

    Google Scholar 

  15. Silverstein AM (2001) The lymphocyte in immunology: from James B. Murphy to James L. Gowans. Nat Immunol 2:569–571

    Article  CAS  PubMed  Google Scholar 

  16. Miller JF (1999) Discovering the origins of immunological competence. Annu Rev Immunol 17:1–17

    Article  CAS  PubMed  Google Scholar 

  17. Baldwin RW (1966) Tumour-specific immunity against spontaneous rat tumours. Int J Cancer 1:257–264

    Article  CAS  PubMed  Google Scholar 

  18. Fass L, Fefer A (1972) Factors related to therapeutic efficacy in adoptive chemoimmunotherapy of a Friend virus-induced lymphoma. Cancer Res 32:2427–2431

    CAS  PubMed  Google Scholar 

  19. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eberlein TJ, Rosenstein M, Spiess P, Wesley R, Rosenberg SA (1982) Adoptive chemoimmunotherapy of a syngeneic murine lymphoma with long-term lymphoid cell lines expanded in T cell growth factor. Cancer Immunol Immunother 13:5–13

    Article  CAS  PubMed  Google Scholar 

  21. Kradin RL, Kurnick JT (1986) Adoptive immunotherapy of cancer with activated lymphocytes and interleukin-2. Pathol Immunopathol Res 5:193–202

    Article  CAS  PubMed  Google Scholar 

  22. Kradin RL, Kurnick JT, Lazarus DS, Preffer FI, Dubinett SM, Pinto CE, Gifford J, Davidson E, Grove B, Callahan RJ et al (1989) Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet 1:577–580

    Article  CAS  PubMed  Google Scholar 

  23. Oliver RT (1988) The clinical potential of interleukin-2. Br J Cancer 58:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaugler B, Van den Eynde B, van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, Lethe B, Brasseur F, Boon T (1994) Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179:921–930

    Article  CAS  PubMed  Google Scholar 

  25. Dudley ME (2011) Adoptive cell therapy for patients with melanoma. J Cancer 2:360–362

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atkins MB, Kunkel L, Sznol M, Rosenberg SA (2000) High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 6(Suppl 1):S11–S14

    PubMed  Google Scholar 

  29. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    CAS  PubMed  Google Scholar 

  30. Rosenberg SA, Eberlein TJ, Grimm EA, Lotze MT, Mazumder A, Rosenstein M (1982) Development of long-term cell lines and lymphoid clones reactive against murine and human tumors: a new approach to the adoptive immunotherapy of cancer. Surgery 92:328–336

    CAS  PubMed  Google Scholar 

  31. Wu R, Forget MA, Chacon J, Bernatchez C, Haymaker C, Chen JQ, Hwu P, Radvanyi LG (2012) Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 18:160–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841

    Article  CAS  PubMed  Google Scholar 

  33. Mazumder A, Grimm EA, Zhang HZ, Rosenberg SA (1982) Lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with lectins. Cancer Res 42:913–918

    CAS  PubMed  Google Scholar 

  34. Koretz MJ, Lawson DH, York RM, Graham SD, Murray DR, Gillespie TM, Levitt D, Sell KM (1991) Randomized study of interleukin 2 (IL-2) alone vs IL-2 plus lymphokine-activated killer cells for treatment of melanoma and renal cell cancer. Arch Surg 126:898–903

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85:622–632

    Article  CAS  PubMed  Google Scholar 

  36. Atkins MB, Mier JW, Parkinson DR, Gould JA, Berkman EM, Kaplan MM (1988) Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med 318:1557–1563

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    Article  CAS  PubMed  Google Scholar 

  38. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  CAS  PubMed  Google Scholar 

  39. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang LX, Shu S, Plautz GE (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65:9547–9554

    Article  CAS  PubMed  Google Scholar 

  43. Poehlein CH, Haley DP, Walker EB, Fox BA (2009) Depletion of tumor-induced Treg prior to reconstitution rescues enhanced priming of tumor-specific, therapeutic effector T cells in lymphopenic hosts. Eur J Immunol 39:3121–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J, Wu R, Lizee G, Mahoney S, Alvarado G et al (2012) Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 18:6758–6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26:332–342

    Article  PubMed  PubMed Central  Google Scholar 

  48. Itzhaki O, Levy D, Zikich D, Treves AJ, Markel G, Schachter J, Besser MJ (2013) Adoptive T-cell transfer in melanoma. Immunotherapy 5:79–90

    Article  CAS  PubMed  Google Scholar 

  49. Ruffini E, Asioli S, Filosso PL, Lyberis P, Bruna MC, Macri L, Daniele L, Oliaro A (2009) Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg 87:365–371, discussion 371–362

    Article  PubMed  Google Scholar 

  50. Horne ZD, Jack R, Gray ZT, Siegfried JM, Wilson DO, Yousem SA, Nason KS, Landreneau RJ, Luketich JD, Schuchert MJ (2011) Increased levels of tumor-infiltrating lymphocytes are associated with improved recurrence-free survival in stage 1A non-small-cell lung cancer. J Surg Res 171:1–5

    Article  CAS  PubMed  Google Scholar 

  51. Kilic A, Landreneau RJ, Luketich JD, Pennathur A, Schuchert MJ (2011) Density of tumor-infiltrating lymphocytes correlates with disease recurrence and survival in patients with large non-small-cell lung cancer tumors. J Surg Res 167:207–210

    Article  PubMed  Google Scholar 

  52. Kopecky O, Lukesova S, Vroblova V, Vokurkova D, Moravek P, Safranek H, Hlavkova D, Soucek P (2007) Phenotype analysis of tumour-infiltrating lymphocytes and lymphocytes in peripheral blood in patients with renal carcinoma. Acta Medica (Hradec Kralove) 50:207–212

    Google Scholar 

  53. Wu MY, Kuo TY, Ho HN (2011) Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc 110:580–586

    Article  CAS  PubMed  Google Scholar 

  54. Hagemann AR, Hagemann IS, Cadungog M, Hwang WT, Patel P, Lal P, Hammond R, Gimotty PA, Chu CS, Rubin SC et al (2011) Tissue-based immune monitoring II: multiple tumor sites reveal immunologic homogeneity in serous ovarian carcinoma. Cancer Biol Ther 12:367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kooi S, Zhang HZ, Patenia R, Edwards CL, Platsoucas CD, Freedman RS (1996) HLA class I expression on human ovarian carcinoma cells correlates with T-cell infiltration in vivo and T-cell expansion in vitro in low concentrations of recombinant interleukin-2. Cell Immunol 174:116–128

    Article  CAS  PubMed  Google Scholar 

  56. Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH (2014) Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 20:434–444

    Article  CAS  PubMed  Google Scholar 

  57. Milne K, Alexander C, Webb JR, Sun W, Dillon K, Kalloger SE, Gilks CB, Clarke B, Kobel M, Nelson BH (2012) Absolute lymphocyte count is associated with survival in ovarian cancer independent of tumor-infiltrating lymphocytes. J Transl Med 10:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dirican A, Ekinci N, Avci A, Akyol M, Alacacioglu A, Kucukzeybek Y, Somali I, Erten C, Demir L, Can A et al (2013) The effects of hematological parameters and tumor-infiltrating lymphocytes on prognosis in patients with gastric cancer. Cancer Biomark 13:11–20

    CAS  PubMed  Google Scholar 

  59. Feichtenbeiner A, Haas M, Buttner M, Grabenbauer GG, Fietkau R, Distel LV (2014) Critical role of spatial interaction between CD8(+) and Foxp3(+) cells in human gastric cancer: the distance matters. Cancer Immunol Immunother 63:111–119

    Article  CAS  PubMed  Google Scholar 

  60. Shen Z, Zhou S, Wang Y, Li RL, Zhong C, Liang C, Sun Y (2010) Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J Cancer Res Clin Oncol 136:1585–1595

    Article  CAS  PubMed  Google Scholar 

  61. Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rodel F, Rodel C, Fokas E (2014) Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer 110:501–509

    Article  CAS  PubMed  Google Scholar 

  62. Junker N, Andersen MH, Wenandy L, Dombernowsky SL, Kiss K, Sorensen CH, Therkildsen MH, Von Buchwald C, Andersen E, Straten PT et al (2011) Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma: a prerequisite for adoptive cell transfer. Cytotherapy 13:822–834

    Article  CAS  PubMed  Google Scholar 

  63. Junker N, Kvistborg P, Kollgaard T, Straten P, Andersen MH, Svane IM (2012) Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures. Cell Immunol 273:1–9

    Article  CAS  PubMed  Google Scholar 

  64. Tsang JY, Ni YB, Chan SK, Shao MM, Kwok YK, Chan KW, Tan PH, Tse GM (2013) CX3CL1 expression is associated with poor outcome in breast cancer patients. Breast Cancer Res Treat 140:495–504

    Article  CAS  PubMed  Google Scholar 

  65. West NR, Kost SE, Martin SD, Milne K, Deleeuw RJ, Nelson BH, Watson PH (2013) Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer 108:155–162

    Article  CAS  PubMed  Google Scholar 

  66. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE, Kim YJ, Kim JH, Park SY (2013) Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer 109:2705–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hudson JM, Castilleja A, Murray JL, Honda T, Kudelka A, Singletary E, Wharton JT, Ioannides CG (1998) Growth and antigen recognition of tumor-infiltrating lymphocytes from human breast cancer. J Interferon Cytokine Res 18:529–536

    Article  CAS  PubMed  Google Scholar 

  68. Deschodt-Lanckman M, Robberecht P, De Neef P, Labrie F, Christophe J (1975) In vitro interactions of gastrointestinal hormones on cyclic adenosine 3′:5′-monophosphate levels and amylase output in the rat pancreas. Gastroenterology 68:318–325

    CAS  PubMed  Google Scholar 

  69. Whitford P, Mallon EA, George WD, Campbell AM (1990) Flow cytometric analysis of tumour infiltrating lymphocytes in breast cancer. Br J Cancer 62:971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E et al (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31:860–867

    Article  CAS  PubMed  Google Scholar 

  71. Coventry BJ, Weeks SC, Heckford SE, Sykes PJ, Bradley J, Skinner JM (1996) Lack of IL-2 cytokine expression despite Il-2 messenger RNA transcription in tumor-infiltrating lymphocytes in primary human breast carcinoma: selective expression of early activation markers. J Immunol 156:3486–3492

    CAS  PubMed  Google Scholar 

  72. Brocker T, Karjalainen K (1995) Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 181:1653–1659

    Article  CAS  PubMed  Google Scholar 

  73. Ramos CA, Dotti G (2011) Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther 11:855–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C, Seliger B, Abken H (2001) Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol 167:6123–6131

    Article  CAS  PubMed  Google Scholar 

  75. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 20:70–75

    Article  CAS  PubMed  Google Scholar 

  76. Finney HM, Akbar AN, Lawson AD (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 172:104–113

    Article  CAS  PubMed  Google Scholar 

  77. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:95ra73

    Google Scholar 

  78. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP, Mei Z et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121:1822–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kochenderfer JN, Rosenberg SA (2013) Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 10:267–276

    Article  CAS  PubMed  Google Scholar 

  80. Erfurt C, Muller E, Emmerling S, Klotz C, Hertl M, Schuler G, Schultz ES (2009) Melanoma-associated chondroitin sulphate proteoglycan as a new target antigen for CD4+ T cells in melanoma patients. Int J Cancer 124:2341–2346

    Article  CAS  PubMed  Google Scholar 

  81. Lo AS, Ma Q, Liu DL, Junghans RP (2010) Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 16:2769–2780

    Article  CAS  PubMed  Google Scholar 

  82. Yvon E, Del Vecchio M, Savoldo B, Hoyos V, Dutour A, Anichini A, Dotti G, Brenner MK (2009) Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res 15:5852–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Adamina M (2010) When gene therapy meets adoptive cell therapy: better days ahead for cancer immunotherapy? Expert Rev Vaccines 9:359–363

    Article  CAS  PubMed  Google Scholar 

  84. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI (1999) Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 163:507–513

    CAS  PubMed  Google Scholar 

  85. Morgan RA, Dudley ME, Rosenberg SA (2010) Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 16:336–341

    Article  CAS  PubMed  Google Scholar 

  86. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II, Rufer N, Romero P, Morgan RA, Schumacher TN et al (2007) Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 110:3564–3572

    Article  CAS  PubMed  Google Scholar 

  88. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed  PubMed Central  Google Scholar 

  90. Prieto PA, Durflinger KH, Wunderlich JR, Rosenberg SA, Dudley ME (2010) Enrichment of CD8+ cells from melanoma tumor-infiltrating lymphocyte cultures reveals tumor reactivity for use in adoptive cell therapy. J Immunother 33:547–556

    Article  PubMed  Google Scholar 

  91. Mackensen A, Meidenbauer N, Vogl S, Laumer M, Berger J, Andreesen R (2006) Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 24:5060–5069

    Article  CAS  PubMed  Google Scholar 

  92. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358:2698–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Verdegaal EM, Visser M, Ramwadhdoebe TH, van der Minne CE, van Steijn JA, Kapiteijn E, Haanen JB, van der Burg SH, Nortier JW, Osanto S (2011) Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol Immunother 60:953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meidenbauer N, Marienhagen J, Laumer M, Vogl S, Heymann J, Andreesen R, Mackensen A (2003) Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:2161–2169

    Article  CAS  PubMed  Google Scholar 

  95. van Oijen M, Bins A, Elias S, Sein J, Weder P, de Gast G, Mallo H, Gallee M, Van Tinteren H, Schumacher T et al (2004) On the role of melanoma-specific CD8+ T-cell immunity in disease progression of advanced-stage melanoma patients. Clin Cancer Res 10:4754–4760

    Article  PubMed  Google Scholar 

  96. Butler MO, Lee JS, Ansen S, Neuberg D, Hodi FS, Murray AP, Drury L, Berezovskaya A, Mulligan RC, Nadler LM et al (2007) Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res 13:1857–1867

    Article  CAS  PubMed  Google Scholar 

  97. Friedman KM, Prieto PA, Devillier LE, Gross CA, Yang JC, Wunderlich JR, Rosenberg SA, Dudley ME (2012) Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes. J Immunother 35:400–408

    Article  CAS  PubMed  Google Scholar 

  98. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW, Dong C (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Evans R, Duffy TM, Kamdar SJ (1991) Differential in situ expansion and gene expression of CD4+ and CD8+ tumor-infiltrating lymphocytes following adoptive immunotherapy in a murine tumor model system. Eur J Immunol 21:1815–1819

    Article  CAS  PubMed  Google Scholar 

  101. Wong JT, Pinto CE, Gifford JD, Kurnick JT, Kradin RL (1989) Characterization of the CD4+ and CD8+ tumor infiltrating lymphocytes propagated with bispecific monoclonal antibodies. J Immunol 143:3404–3411

    CAS  PubMed  Google Scholar 

  102. Xiang J, Huang H, Liu Y (2005) A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol 174:7497–7505

    Article  CAS  PubMed  Google Scholar 

  103. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, Levy D, Kubi A, Hovav E, Chermoshniuk N et al (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16:2646–2655

    Article  CAS  PubMed  Google Scholar 

  104. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Schallmach E, Kubi A, Shalmon B, Hardan I, Catane R et al (2009) Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients. J Immunother 32:415–423

    Article  CAS  PubMed  Google Scholar 

  105. Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE et al (2010) CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 16:6122–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA, Dudley ME (2008) Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 31:742–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Besser MJ, Schallmach E, Oved K, Treves AJ, Markel G, Reiter Y, Schachter J (2009) Modifying interleukin-2 concentrations during culture improves function of T cells for adoptive immunotherapy. Cytotherapy 11:206–217

    Article  CAS  PubMed  Google Scholar 

  108. Hernandez-Chacon JA, Li Y, Wu RC, Bernatchez C, Wang Y, Weber JS, Hwu P, Radvanyi LG (2011) Costimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances antitumor effector function. J Immunother 34:236–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC, Carroll RG, Riley JL, June CH (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15:981–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ahmed R, Bevan MJ, Reiner SL, Fearon DT (2009) The precursors of memory: models and controversies. Nat Rev Immunol 9:662–668

    Article  CAS  PubMed  Google Scholar 

  111. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  CAS  PubMed  Google Scholar 

  112. Merkenschlager M, Terry L, Edwards R, Beverley PC (1988) Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol 18:1653–1661

    Article  CAS  PubMed  Google Scholar 

  113. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17:1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  CAS  PubMed  Google Scholar 

  115. Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF (2005) Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 175:7046–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M, Dokal I, Webster D, Lawson AD, Akbar AN (2007) The loss of telomerase activity in highly differentiated CD8 + CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol 178:7710–7719

    Article  CAS  PubMed  Google Scholar 

  117. Kim EH, Sullivan JA, Plisch EH, Tejera MM, Jatzek A, Choi KY, Suresh M (2012) Signal integration by Akt regulates CD8 T cell effector and memory differentiation. J Immunol 188:4305–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Henson SM, Franzese O, Macaulay R, Libri V, Azevedo RI, Kiani-Alikhan S, Plunkett FJ, Masters JE, Jackson S, Griffiths SJ et al (2009) KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113:6619–6628

    Article  CAS  PubMed  Google Scholar 

  119. Appay V, Papagno L, Spina CA, Hansasuta P, King A, Jones L, Ogg GS, Little S, McMichael AJ, Richman DD et al (2002) Dynamics of T cell responses in HIV infection. J Immunol 168:3660–3666

    Article  CAS  PubMed  Google Scholar 

  120. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  CAS  PubMed  Google Scholar 

  121. Chattopadhyay PK, Betts MR, Price DA, Gostick E, Horton H, Roederer M, De Rosa SC (2009) The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J Leukoc Biol 85:88–97

    Article  CAS  PubMed  Google Scholar 

  122. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 28:258–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28:53–62

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fang M, Siciliano NA, Hersperger AR, Roscoe F, Hu A, Ma X, Shamsedeen AR, Eisenlohr LC, Sigal LJ (2012) Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci U S A 109:9983–9988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qui HZ, Hagymasi AT, Bandyopadhyay S, St Rose MC, Ramanarasimhaiah R, Menoret A, Mittler RS, Gordon SM, Reiner SL, Vella AT et al (2011) CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J Immunol 187:3555–3564

    Google Scholar 

  126. Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K, Nieda M (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 105:778–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3:269–279

    Article  CAS  PubMed  Google Scholar 

  128. Markley JC, Sadelain M (2010) IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 115:3508–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Santegoets SJ, Turksma AW, Suhoski MM, Stam AG, Albelda SM, Hooijberg E, Scheper RJ, van den Eertwegh AJ, Gerritsen WR, Powell DJ Jr et al (2013) IL-21 promotes the expansion of CD27+ CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells. J Transl Med 11:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Araki K, Youngblood B, Ahmed R (2013) Programmed cell death 1-directed immunotherapy for enhancing T-cell function. Cold Spring Harb Symp Quant Biol 78:239–247

    Article  PubMed  Google Scholar 

  131. Dolan DE, Gupta S (2014) PD-1 Pathway Inhibitors: changing the landscape of cancer immunotherapy. Cancer Control 21:231–237

    PubMed  Google Scholar 

  132. Gardiner D, Lalezari J, Lawitz E, DiMicco M, Ghalib R, Reddy KR, Chang KM, Sulkowski M, Marro SO, Anderson J et al (2013) A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS One 8, e63818

    Article  PubMed  PubMed Central  Google Scholar 

  133. Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, Yagita H, Overwijk WW, Lizee G, Radvanyi L et al (2012) PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res 72:5209–5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Peng W, Lizee G, Hwu P (2013) Blockade of the PD-1 pathway enhances the efficacy of adoptive cell therapy against cancer. Oncoimmunology 2, e22691

    Article  PubMed  PubMed Central  Google Scholar 

  135. Radvanyi L, Pilon-Thomas S, Peng W, Sarnaik A, Mule JJ, Weber J, Hwu P (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer--letter. Clin Cancer Res 19:5541

    Article  CAS  PubMed  Google Scholar 

  136. Brentjens RJ, Curran KJ (2012) Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematology Am Soc Hematol Educ Program 2012:143–151

    PubMed  Google Scholar 

  137. Turtle CJ (2014) Chimeric antigen receptor modified T cell therapy for B cell malignancies. Int J Hematol 99:132–140

    Article  CAS  PubMed  Google Scholar 

  138. Khalili JS, Hwu P, Lizee G (2013) Forging a link between oncogenic signaling and immunosuppression in melanoma. Oncoimmunology 2, e22745

    Article  PubMed  PubMed Central  Google Scholar 

  139. Khalili JS, Liu S, Rodriguez-Cruz TG, Whittington M, Wardell S, Liu C, Zhang M, Cooper ZA, Frederick DT, Li Y et al (2012) Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 18:5329–5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, Chen JQ, Li HS, Watowich SS, Yang Y et al (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19:393–403

    Article  CAS  PubMed  Google Scholar 

  141. Reis PP, Waldron L, Goswami RS, Xu W, Xuan Y, Perez-Ordonez B, Gullane P, Irish J, Jurisica I, Kamel-Reid S (2011) mRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol 11:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Beard RE, Abate-Daga D, Rosati SF, Zheng Z, Wunderlich JR, Rosenberg SA, Morgan RA (2013) Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clin Cancer Res 19:4941–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, Schell MJ, Sondak VK, Weber JS, Mule JJ (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Tanese K, Grimm EA, Ekmekcioglu S (2012) The role of melanoma tumor-derived nitric oxide in the tumor inflammatory microenvironment: its impact on the chemokine expression profile, including suppression of CXCL10. Int J Cancer 131:891–901

    Article  CAS  PubMed  Google Scholar 

  145. Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA (2000) Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 6:4768–4775

    CAS  PubMed  Google Scholar 

  146. Marzese DM, Scolyer RA, Huynh JL, Huang SK, Hirose H, Chong KK, Kiyohara E, Wang J, Kawas NP, Donovan NC et al (2014) Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Hum Mol Genet 23:226–238

    Article  CAS  PubMed  Google Scholar 

  147. Griewank KG, Ugurel S, Schadendorf D, Paschen A (2013) New developments in biomarkers for melanoma. Curr Opin Oncol 25:145–151

    Article  CAS  PubMed  Google Scholar 

  148. Mann GJ, Pupo GM, Campain AE, Carter CD, Schramm SJ, Pianova S, Gerega SK, De Silva C, Lai K, Wilmott JS et al (2013) BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol 133:509–517

    Article  CAS  PubMed  Google Scholar 

  149. Gajewski TF, Louahed J, Brichard VG (2010) Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J 16:399–403

    Article  CAS  PubMed  Google Scholar 

  150. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO et al (2012) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61:1019–1031

    Article  CAS  PubMed  Google Scholar 

  151. Ahmadzadeh M, Felipe-Silva A, Heemskerk B, Powell DJ Jr, Wunderlich JR, Merino MJ, Rosenberg SA (2008) FOXP3 expression accurately defines the population of intratumoral regulatory T cells that selectively accumulate in metastatic melanoma lesions. Blood 112:4953–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205

    Article  PubMed  PubMed Central  Google Scholar 

  153. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  154. Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71:5601–5605

    Article  CAS  PubMed  Google Scholar 

  155. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233–240

    Article  CAS  PubMed  Google Scholar 

  156. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200ra116

    Google Scholar 

  157. Pilon-Thomas S, Kuhn L, Ellwanger S, Janssen W, Royster E, Marzban S, Kudchadkar R, Zager J, Gibney G, Sondak VK et al (2012) Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J Immunother 35:615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jin J, Sabatino M, Somerville R, Wilson JR, Dudley ME, Stroncek DF, Rosenberg SA (2012) Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J Immunother 35:283–292

    Article  PubMed  PubMed Central  Google Scholar 

  159. Somerville RP, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE(R) bioreactor. J Transl Med 10:69

    Article  PubMed  PubMed Central  Google Scholar 

  160. Donia M, Larsen SM, Met O, Svane IM (2014) Simplified protocol for clinical-grade tumor-infiltrating lymphocyte manufacturing with use of the Wave bioreactor. Cytotherapy 16:1117–1120

    Article  CAS  PubMed  Google Scholar 

  161. Dudley ME, Gross CA, Somerville RP, Hong Y, Schaub NP, Rosati SF, White DE, Nathan D, Restifo NP, Steinberg SM et al (2013) Randomized selection design trial evaluating CD8 + -enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol 31:2152–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–645

    Article  CAS  PubMed  Google Scholar 

  163. Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, Coukos G, Powell DJ Jr (2014) CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res 20:44–55

    Article  CAS  PubMed  Google Scholar 

  164. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME et al (2014) PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest 124:2246–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chacon JA, Wu RC, Sukhumalchandra P, Molldrem JJ, Sarnaik A, Pilon-Thomas S, Weber J, Hwu P, Radvanyi L (2013) Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS One 8, e60031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chacon JA, Pilon-Thomas S, Sarnaik AA, Radvanyi LG (2013) Continuous 4-1BB co-stimulatory signals for the optimal expansion of tumor-infiltrating lymphocytes for adoptive T-cell therapy. Oncoimmunology 2, e25581

    Article  PubMed  PubMed Central  Google Scholar 

  167. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73:3591–3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met O, Holmich LR, Andersen RS, Hadrup SR, Andersen MH et al (2012) Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med 10:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ullenhag GJ, Sadeghi AM, Carlsson B, Ahlstrom H, Mosavi F, Wagenius G, Totterman TH (2012) Adoptive T-cell therapy for malignant melanoma patients with TILs obtained by ultrasound-guided needle biopsy. Cancer Immunol Immunother 61:725–732

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Radvanyi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chacon, J. et al. (2015). Clinical Success of Adoptive Cell Transfer Therapy Using Tumor Infiltrating Lymphocytes. In: Ascierto, P., Stroncek, D., Wang, E. (eds) Developments in T Cell Based Cancer Immunotherapies. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21167-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21167-1_7

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21166-4

  • Online ISBN: 978-3-319-21167-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics