Skip to main content

Stem and Progenitor Cells of the Trachea and Proximal Airways

  • Chapter
Stem Cells in the Lung

Abstract

The proximal airway epithelium plays a vital role in host defense through the process of mucociliary clearance. This epithelium is constantly being injured by exposure to toxins and microbials from the environment, but it has an efficient repair mechanism originating from its endogenous stem cells. However, with chronic injury, this repair process can go awry and result in several airway diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, and lung cancer. Understanding the proximal airway epithelium, its stem cell subpopulations, its development, its niche, and the mechanisms regulating its repair are all critical for ultimately developing novel therapies for airway diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mercer RR, Russell ML, Roggli VL, Crapo JD (1994) Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol 10(6):613–624

    Article  CAS  PubMed  Google Scholar 

  2. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453(7196):745–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC et al (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15(2):123–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S et al (2011) Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 8(3):223–272

    Article  PubMed Central  PubMed  Google Scholar 

  5. Grompe M (2012) Tissue stem cells: new tools and functional diversity. Cell Stem Cell 10(6):685–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mackenzie IC, Bickenbach JR (1985) Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell Tissue Res 242(3):551–556

    Article  CAS  PubMed  Google Scholar 

  7. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH (2001) Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 24(6):662–670

    Article  CAS  PubMed  Google Scholar 

  8. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24(6):671–681

    Article  CAS  PubMed  Google Scholar 

  9. Bowden DH (1983) Cell turnover in the lung. Am Rev Respir Dis 128(2 Pt 2):S46–S48

    CAS  PubMed  Google Scholar 

  10. Rawlins EL, Hogan BL (2008) Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol 295(1):L231–L234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133(13):2455–2465

    Article  CAS  PubMed  Google Scholar 

  13. Hutton E, Paladini RD, Yu QC, Yen M, Coulombe PA, Fuchs E (1998) Functional differences between keratins of stratified and simple epithelia. J Cell Biol 143(2):487–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164(2):577–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cole BB, Smith RW, Jenkins KM, Graham BB, Reynolds PR, Reynolds SD (2010) Tracheal Basal cells: a facultative progenitor cell pool. Am J Pathol 177(1):362–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ghosh M, Brechbuhl HM, Smith RW, Li B, Hicks DA, Titchner T et al (2011) Context-dependent differentiation of multipotential keratin 14-expressing tracheal basal cells. Am J Respir Cell Mol Biol 45(2):403–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hegab AE, Ha VL, Gilbert JL, Zhang KX, Malkoski SP, Chon AT et al (2011) Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells 29(8):1283–1293

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ooi AT, Mah V, Nickerson DW, Gilbert JL, Ha VL, Hegab AE (2010) Presence of a putative tumor-initiating progenitor cell population predicts poor prognosis in smokers with non-small cell lung cancer. Cancer Res 70(16):6639–6648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hegab AE, Ha VL, Darmawan DO, Gilbert JL, Ooi AT, Attiga YS et al (2012) Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med 1(10):719–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM (2011) Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell 22(21):4068–4078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ford JR, Terzaghi-Howe M (1992) Basal cells are the progenitors of primary tracheal epithelial cell cultures. Exp Cell Res 198(1):69–77

    Article  CAS  PubMed  Google Scholar 

  22. Zepeda ML, Chinoy MR, Wilson JM (1995) Characterization of stem cells in human airway capable of reconstituting a fully differentiated bronchial epithelium. Somat Cell Mol Genet 21(1):61–73

    Article  CAS  PubMed  Google Scholar 

  23. Engelhardt JF, Schlossberg H, Yankaskas JR, Dudus L (1995) Progenitor cells of the adult human airway involved in submucosal gland development. Development 121(7):2031–2046

    CAS  PubMed  Google Scholar 

  24. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106(31):12771–12775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H et al (2009) The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4(6):525–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM et al (2013) Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503(7475):218–223

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Hegab AE, Nickerson DW, Ha VL, Darmawan DO, Gomperts BN (2012) Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury. Respirology 17(7):1101–1113

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schoch KG, Lori A, Burns KA, Eldred T, Olsen JC, Randell SH (2004) A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. Am J Physiol Lung Cell Mol Physiol 286(4):L631–L642

    Article  CAS  PubMed  Google Scholar 

  29. Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52(4):735–746

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H et al (2011) A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell. Am J Respir Cell Mol Biol 45(3):459–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hegab AE, Ha VL, Bisht B, Darmawan DO, Ooi AT, Zhang KX (2014) Aldehyde dehydrogenase activity enriches for proximal airway basal stem cells and promotes their proliferation. Stem Cells Dev 23(6):664–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Forster N, Saladi SV, van Bragt M, Sfondouris ME, Jones FE, Li Z (2014) Basal cell signaling by p63 controls luminal progenitor function and lactation via NRG1. Dev Cell 28(2):147–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kurita T, Medina RT, Mills AA, Cunha GR (2004) Role of p63 and basal cells in the prostate. Development 131(20):4955–4964

    Article  CAS  PubMed  Google Scholar 

  34. Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH (2004) Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol 287(1):C171–C181

    Article  CAS  PubMed  Google Scholar 

  35. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074

    Article  CAS  PubMed  Google Scholar 

  36. Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136(13):2297–2307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BL (2011) Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8(6):639–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Morimoto M, Nishinakamura R, Saga Y, Kopan R (2012) Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139(23):4365–4373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Paul MK, Bisht B, Darmawan DO, Chiou R, Ha VL, Wallace WD et al (2014) Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell 15(2):199–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A (2014) Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J 44(2):513–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Taron M, Ichinose Y, Rosell R, Mok T, Massuti B, Zamora L (2005) Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res 11(16):5878–5885

    Article  CAS  PubMed  Google Scholar 

  42. Brechbuhl HM, Li B, Smith RW, Reynolds SD (2014) Epidermal growth factor receptor activity is necessary for mouse basal cell proliferation. Am J Physiol Lung Cell Mol Physiol 307(10):L800–L810

    Article  CAS  PubMed  Google Scholar 

  43. Hegab AE, Sakamoto T, Nomura A, Ishii Y, Morishima Y, Iizuka T (2007) Niflumic acid and AG-1478 reduce cigarette smoke-induced mucin synthesis: the role of hCLCA1. Chest 131(4):1149–1156

    Article  CAS  PubMed  Google Scholar 

  44. Li C, Li A, Li M, Xing Y, Chen H, Hu L et al (2009) Stabilized beta-catenin in lung epithelial cells changes cell fate and leads to tracheal and bronchial polyposis. Dev Biol 334(1):97–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Smith MK, Koch PJ, Reynolds SD (2012) Direct and indirect roles for β-catenin in facultative basal progenitor cell differentiation. Am J Physiol Lung Cell Mol Physiol 302(6):L580–L594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Brechbuhl HM, Ghosh M, Smith MK, Smith RW, Li B, Hicks DA (2011) β-catenin dosage is a critical determinant of tracheal basal cell fate determination. Am J Pathol 179(1):367–379

    Article  PubMed Central  PubMed  Google Scholar 

  47. Tan FE, Vladar EK, Ma L, Fuentealba LC, Hoh R, Espinoza FH (2013) Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 140(20):4277–4286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pan JH, Adair-Kirk TL, Patel AC, Huang T, Yozamp NS, Xu J et al (2014) Myb permits multilineage airway epithelial cell differentiation. Stem Cells 32(12):3245–3256

    Article  CAS  PubMed  Google Scholar 

  49. Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10(4):362–369

    Article  CAS  PubMed  Google Scholar 

  50. Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BL (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 111(35):E3641–E3649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. You Y, Richer EJ, Huang T, Brody SL (2002) Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am J Physiol Lung Cell Mol Physiol 283(6):L1315–L1321

    Article  CAS  PubMed  Google Scholar 

  52. Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P (1996) Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 14(1):104–112

    Article  CAS  PubMed  Google Scholar 

  53. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Rock JR, Randell SH, Hogan BL (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3(9–10):545–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Marin MG, Culp DJ (1986) Isolation and culture of submucosal gland cells. Clin Chest Med 7(2):239–245

    CAS  PubMed  Google Scholar 

  57. Ballard ST, Spadafora D (2007) Fluid secretion by submucosal glands of the tracheobronchial airways. Respir Physiol Neurobiol 159(3):271–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Snider GL (1981) Pathogenesis of emphysema and chronic bronchitis. Med Clin North Am 65(3):647–665

    CAS  PubMed  Google Scholar 

  59. Wood RE, Boat TF, Doershuk CF (1976) Cystic fibrosis. Am Rev Respir Dis 113(6):833–878

    CAS  PubMed  Google Scholar 

  60. Fahy JV (2001) Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med 164(10 Pt 2):S46–S51

    Article  CAS  PubMed  Google Scholar 

  61. Liu X, Driskell RR, Engelhardt JF (2004) Airway glandular development and stem cells. Curr Top Dev Biol 64:33–56

    Article  CAS  PubMed  Google Scholar 

  62. Wansleeben C, Bowie E, Hotten DF, Yu YR, Hogan BL (2014) Age-related changes in the cellular composition and epithelial organization of the mouse trachea. PLoS One 9(3):e93496

    Article  PubMed Central  PubMed  Google Scholar 

  63. Prater MD, Petit V, Alasdair Russell I, Giraddi RR, Shehata M, Menon S et al (2014) Mammary stem cells have myoepithelial cell properties. Nat Cell Biol 16(10):942–950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Pringle S, Van Os R, Coppes RP (2013) Concise review: adult salivary gland stem cells and a potential therapy for xerostomia. Stem Cells 31(4):613–619

    Article  CAS  PubMed  Google Scholar 

  65. Kurata R, Futaki S, Nakano I, Tanemura A, Murota H, Katayama I et al (2014) Isolation and characterization of sweat gland myoepithelial cells from human skin. Cell Struct Funct 39(2):101–112

    Article  PubMed  Google Scholar 

  66. Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N et al (2012) Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150(1):136–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Green FH, Williams DJ, James A, McPhee LJ, Mitchell I, Mauad T (2010) Increased myoepithelial cells of bronchial submucosal glands in fatal asthma. Thorax 65(1):32–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Hegab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hegab, A.E., Betsuyaku, T., Gomperts, B.N. (2015). Stem and Progenitor Cells of the Trachea and Proximal Airways. In: Bertoncello, I. (eds) Stem Cells in the Lung. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21082-7_6

Download citation

Publish with us

Policies and ethics