Skip to main content

Physical Network Systems and Model Reduction

  • Conference paper
  • First Online:
Mathematical Control Theory II

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 462))

Abstract

The common structure of a number of physical network systems is identified, based on the incidence structure of the graph, the weights associated to the edges, and the total stored energy. State variables may not only be associated to the vertices, but also to the edges of the graph; in clear contrast with multiagent systems. Structure-preserving model reduction concerns the problem of approximating a complex physical network system by a system of lesser complexity, but within the same class of physical network systems. Two approaches, respectively, based on clustering and on Kron reduction, are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See for a further discussion [24].

  2. 2.

    The setup can be easily extended (i.e., by using Kronecker products) to the situation that the scalar variable \(x_i\) is replaced by a vector in some higher dimensional physical space, e.g., \(\mathbb {R}^3\); see the remarks later on.

  3. 3.

    Note that \(\mathscr {K}\), and therefore the Laplacian matrix \(\mathscr {L}= B \mathscr {K}B^T\), is dependent on the choice of the thermodynamic equilibrium \(x^*\). However, this dependence is minor: for a connected complex graph the matrix \(\mathscr {K}\) is, up to a positive multiplicative factor, independent of the choice of \(x^*\) [25].

  4. 4.

    For an extension of these results to complex-balanced mass action kinetics reaction networks we refer to [15].

References

  1. Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 52(8), 1380–1390 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bollobas, B.: Modern Graph Theory, Graduate Texts in Mathematics 184. Springer, New York (1998)

    Google Scholar 

  3. Biyik, E., Arcak, M.: Area aggregation and time-scale modeling for sparse nonlinear networks. Syst. Control Lett. 57(2), 142149 (2007)

    MathSciNet  Google Scholar 

  4. Bürger, M., De Persis, C., Trip, S.: An internal model approach to (optimal) frequency regulation in power grids. In: Proceedings IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 223–228, 15–17 Dec 2014

    Google Scholar 

  5. Chow, J.H., Allemong, J.J., Kokotovic, P.V.: Singular perturbation analysis of systems with sustained high frequency oscillations. Automatica 14(3), 271–279 (1978)

    Article  MATH  Google Scholar 

  6. DePersis, C., Kallesoe, C.S.: Pressure regulation in nonlinear hydraulic networks by positive and quantized control. IEEE Trans. Control Syst. Technol. 19(6), 1371–1383 (2011)

    Article  Google Scholar 

  7. Dörfler, F., Bullo, F.: Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circ. Syst. I: Regul. Pap. 60(1), 150–163 (2013)

    Google Scholar 

  8. Feinberg, M.: Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem. Eng. Sci. 44(9), 1819–1827 (1989)

    Article  Google Scholar 

  9. Godsil, C., Royle, G.: Algebraic graph theory. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  10. Imura, J.-I.: Clustered model reduction of large-scale complex networks. In: Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Melbourne (2012)

    Google Scholar 

  11. Ishizaki, T., Kashida, K., Imura, J.-I., Aihara, K.: Network clustering for SISO linear dynamical networks via reaction-diffusion transformation. In: Proceeding of 18th IFAC World Congress, Milan, Italy, pp. 5639–5644 (2011)

    Google Scholar 

  12. Machovski, J., Bialek, J., Bumby, J.: Power System Dynamics: Stability and Control, 2nd edn. Wiley, Chichester (2008)

    Google Scholar 

  13. Monshizadeh, N., Camlibel, M.K., Trentelman, H.L.: Projection based model reduction of multi-agent systems using graph partitions. IEEE Trans. Control Netw. Syst. 1(2), 145–154 (2014)

    Article  MathSciNet  Google Scholar 

  14. Monshizadeh, N., van der Schaft, A.J.: Structure-preserving model reduction of physical network systems by clustering. In: Proceedings 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, Dec (2014)

    Google Scholar 

  15. Rao, S., van der Schaft, A.J., Jayawardhana, B.: A graph-theoretical approach for the analysis and model reduction of complex-balanced chemical reaction networks. J. Math. Chem. 51, 2401–2422 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rao, S., van der Schaft, A.J., van Eunen, K., Bakker, B.M., Jayawardhana, B.: A model reduction method for biochemical reaction networks. BMC Syst. Biol. 8, 52 (2014)

    Article  Google Scholar 

  17. Romeres, D., Dörfler, F., Bullo, F.: Novel results on slow coherency in consensus and power networks. Eur. Control conf. 742–747 (2013)

    Google Scholar 

  18. Sandberg, H., Murray, R.M.: Model reduction of interconnected linear systems. Optimal Control Appl. Methods 30(3), 225–245 (2009)

    Article  MathSciNet  Google Scholar 

  19. van der Schaft, A.J.: \(L_2\)-Gain and Passivity Techniques in Nonlinear Control, Lectures Notes in Control and Information Sciences, Vol. 218, Springer, Berlin (1996). 2nd rev. and enlarged edn. Springer, London (2000)

    Google Scholar 

  20. van der Schaft, A.J.: Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters 59, 423–428 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. van der Schaft, A.J.: On model reduction of physical network systems. In: Proceeding of 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS2014), pp. 1419–1425. Groningen, The Netherlands, 7–11 July 2014

    Google Scholar 

  22. van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview. Found. Trends Syst. Control 1(2/3), 173–378 (2014)

    Article  Google Scholar 

  23. van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik 49, 362–371 (1995)

    Google Scholar 

  24. van der Schaft, A.J., Maschke, B.M.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51(2), 906–937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. van der Schaft, A.J., Rao, S., Jayawardhana, B.: On the mathematical structure of balanced chemical reaction networks governed by mass action kinetics. SIAM J. Appl. Math. 73(2), 953–973 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. van der Schaft, A.J., Rao, S, Jayawardhana, B.: Complex and detailed balancing of chemical reaction networks revisited. J. Math. Chem. 53(6), 1445–1458 (2015)

    Google Scholar 

  27. van der Schaft, A.J.: Modeling of physical network systems. In: preparation (2015)

    Google Scholar 

  28. Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme. Zetschrift für Physikalische Chemie 39, 257–303 (1902)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan van der Schaft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

van der Schaft, A. (2015). Physical Network Systems and Model Reduction. In: Belur, M., Camlibel, M., Rapisarda, P., Scherpen, J. (eds) Mathematical Control Theory II. Lecture Notes in Control and Information Sciences, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-319-21003-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21003-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21002-5

  • Online ISBN: 978-3-319-21003-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics