Skip to main content

OCT and Early MS: Clinically Isolated Syndromes (CIS)

  • Chapter
Optical Coherence Tomography in Multiple Sclerosis
  • 899 Accesses

Abstract

Multiple sclerosis (MS) is a disease of the central nervous system (CNS) believed to arise from a dysfunctional immune-mediated response in a genetically susceptible host. The actual cause of MS is not known, and there is ongoing debate about whether this CNS disorder is predominantly an inflammatory versus a degenerative condition. The afferent visual pathway (AVP) is frequently involved in MS, such that 1 in every 5 affected individuals presents with acute optic neuritis (ON) as their first demyelinating event. Moreover, ON is the best-characterized clinically isolated syndrome (CIS), which may herald a predilection for developing future MS. As a functionally eloquent system, the AVP is amenable to interrogation with highly reliable and reproducible tests that can be used to define a structural–functional paradigm of CNS injury. The AVP has numerous unique advantages as a clinical model of MS, through which we can elucidate mechanisms of brain injury and repair. In this chapter, the role of optical coherence tomography (OCT) as a structural marker of neuroaxonal integrity in the AVP model will be presented. A review of the published literature on the role of OCT in capturing manifestations of axonal injury and neuronal damage will be outlined, with particular emphasis on early MS and clinically isolated syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17.

    Article  CAS  PubMed  Google Scholar 

  2. Costello F. The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. ISRN Neurol. 2013. doi:10.1155/2013/134858.

    PubMed Central  PubMed  Google Scholar 

  3. Racke MK. Disease mechanisms in ME: the potassium channel KIR4.1 a potential auto- antigen in MS. Nat Rev Neurol. 2012;8(11):595–6.

    Article  CAS  PubMed  Google Scholar 

  4. Poser CM, Paty DW, Scheinberg L. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13:227–31.

    Article  CAS  PubMed  Google Scholar 

  5. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology. 1996;46(4):907–11.

    Article  CAS  PubMed  Google Scholar 

  6. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol. 2001;50:121–7.

    Article  CAS  PubMed  Google Scholar 

  7. Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the McDonald criteria. Ann Neurol. 2005;58:840–6.

    Article  PubMed  Google Scholar 

  8. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated syndromes suggestive of multiple sclerosis, part 1: natural history, pathogenesis, diagnosis and prognosis. Lancet Neurol. 2005;4:281–8.

    Article  PubMed  Google Scholar 

  10. Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006;129:606–16.

    Article  PubMed  Google Scholar 

  11. Costello F, Burton JM. An approach to optic neuritis: the initial presentation. Expert Rev Ophthalmol. 2013;8(6):539–51.

    Article  CAS  Google Scholar 

  12. Hickman SJ, Dalton CM, Miller DH, Plant GT. Management of acute optic neuritis. Lancet. 2002;360:1953–62.

    Article  CAS  PubMed  Google Scholar 

  13. Beck RW, Cleary PA, Anderson Jr MM, et al. A randomized, con- trolled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med. 1992;326:581–8.

    Article  CAS  PubMed  Google Scholar 

  14. Optic Neuritis Study Group. The clinical profile of optic neuritis: experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol. 1991;109:1673–8.

    Article  Google Scholar 

  15. Beck RW. Optic neuritis. Chapter 12. In: Walsh & Hoyt’s clinical neuro-ophthalmology, vol. 5. 5th ed. Baltimore: Williams & Wilkins; 1998. p. 599–647.

    Google Scholar 

  16. Costello F. Inflammatory optic neuropathies. Continuum (Minneap Minn). 2014;20:816–37.

    Google Scholar 

  17. Shams PN, Plant GT. Optic neuritis: a review. Int MS J. 2009;16:82–9.

    CAS  PubMed  Google Scholar 

  18. Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133:1591–601.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated syndromes suggestive of multiple sclerosis, part 2: non-conventional MRI, recovery processes, and management. Lancet Neurol. 2005;4:341–8.

    Article  CAS  PubMed  Google Scholar 

  20. Costello FE, Klistorner A, Kardon R. Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis. Ophthalmic Surg Lasers Imaging. 2011;42:S28–40.

    Article  PubMed  Google Scholar 

  21. Frohman EM, Fujimoto JG, Frohman TC, Calabresi PA, Cutter G, Balcer LJ. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol. 2008;4:664–5.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sakai RE, Feller DJ, Galetta KM, et al. Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol. 2011;31(4):362–73.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Costello FE. Optical coherence tomography: which machine do you want to own? J Neuroophthalmol. 2014;34(Suppl):S3–9.

    Article  PubMed  Google Scholar 

  24. Syc S, Saidha S, Newsome SD, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain. 2012;135:521–33.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kaufhold F, Zimmermann H, Schneider E, et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One. 2013;8:e71145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kaushik M, Wang CY, Barnett MH. Inner nuclear layer thickening is inversely proportional to retinal ganglion cell loss in optic neuritis. PLoS One. 2013;8:e78341.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kupersmith MJ, Gal RL, Beck RW, et al. Visual function at baseline and 1 month in acute optic neuritis: predictors of visual outcome. Neurology. 2007;69:508–14.

    Article  CAS  PubMed  Google Scholar 

  28. Kupersmith MJ, Anderson S, Kardon R. Predictive value of 1 month retinal nerve fiber layer thinning for deficits at 6 months after acute optic neuritis. Mult Scler. 2013;19(13):1743–8.

    Article  PubMed  Google Scholar 

  29. Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9:921–32.

    Article  PubMed  Google Scholar 

  30. Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol. 2006;59:963–9.

    Article  PubMed  Google Scholar 

  31. Costello F, Hodge W, Pan YI, Burton JM, Freedman MS, Stys PK, et al. Sex-specific differences in retinal nerve fiber layer thinning after acute optic neuritis. Neurology. 2012;79:1866–72.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Oberwahrenbrock T, Ringelstein M, Jentschke S, et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler. 2013;19(14):1887–95.

    Article  PubMed  Google Scholar 

  33. Outteryck O, Zephir H, Defoort S, et al. Optical coherence tomography in clinically isolated syndrome: no evidence of subclinical retinal axonal loss. Arch Neurol. 2009;66:1373–7.

    Article  PubMed  Google Scholar 

  34. Kallenbach K, Sander B, Tsakiri A, et al. Neither retinal nor brain atrophy can be shown in patients with isolated unilateral optic neuritis at the time of presentation. Mult Scler. 2011;17:89–95.

    Article  PubMed  Google Scholar 

  35. Costello F, Hodge W, Pan YI, Metz L, Kardon R. Retinal nerve fiber layer and future risk of multiple sclerosis. Can J Neurol Sci. 2008;35:482–7.

    Article  PubMed  Google Scholar 

  36. Costello F, Hodge W, Pan YI. Exploring the association between retinal nerve fiber layer thickness and initial magnetic resonance imaging findings in patients with acute optic neuritis. Mult Scler Int. 2011;2011:2899785.

    Google Scholar 

  37. Pérez-Rico C, Ayuso-Peralta L, Rubio-Pérez L. Evaluation of visual structural and functional factors that predict the development of multiple sclerosis in clinically isolated syndrome patients. Invest Ophthalmol Vis Sci. 2014;55:6127–31.

    Article  PubMed  Google Scholar 

  38. Galetta KM, Graves J, Talman LS. Visual pathway axonal loss in benign multiple sclerosis: a longitudinal study. J Neuroophthalmol. 2012;32:116–23.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Lange AP, Zhu F, Sayao AL, et al. Retinal nerve fiber layer thickness in benign multiple sclerosis. Mult Scler. 2013;10:1275–81.

    Article  Google Scholar 

  40. Costello F, Hodge W, Pan YI, Eggenberger E, Fredman MS. Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol. 2010;45(5):520–6.

    Article  PubMed  Google Scholar 

  41. Talman L, Bisker ER, Sackel DJ, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol. 2010;67(6):749–60.

    PubMed Central  PubMed  Google Scholar 

  42. Narayanan D, Cheng H, Bonem KN, Saenz R, Tang RA, Frishman LJ. Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Mult Scler. 2014;20(10):1331–41.

    Article  PubMed  Google Scholar 

  43. Ratchford JN, Saidha S, Sotirchos ES, et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology. 2013;80:47–54.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012;135:1786–93.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Saidha S, Sotirchos ES, Ibrahim MA, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol. 2012;11:963–72.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Costello F. Evaluating the use of optical coherence tomography in optic neuritis. Mult Scler Int. 2011(2011);148394: p. 9.

    Google Scholar 

  47. Wilejto M, Shroff M, Buncic JR, Kennedy J, Goia C, Banwell B. The clinical features, MRI findings, and outcome of optic neuritis in children. Neurology. 2006;67:258–62.

    Article  CAS  PubMed  Google Scholar 

  48. Yeh EA, Weinstock-Guttman B, Lincoff N, et al. Retinal nerve fiber thickness in inflammatory demyelinating diseases of childhood onset. Mult Scler. 2009;15:802–10.

    Article  CAS  PubMed  Google Scholar 

  49. Yeh EA, Marrie RA, Reginald YA. Functional-structural correlations in the afferent visual pathway in pediatric demyelination. Neurology. 2014;83(23):2147–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Huhn K, Lammer R, Oberwahrenbrock T, et al. Optical coherence tomography in patients with a history of juvenile multiple sclerosis reveals early retinal damage. Eur J Neurol. 2015;22(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  51. Klistorner A, Arvind H, Garrick R, Graham SL, Paine M, Yiannikas C. Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis. Investig Ophthalmol Vis Sci. 2010;51:2770–7.

    Article  Google Scholar 

  52. Klistorner A, Arvind H, Nguyen T, et al. Axonal loss and myelin in early on loss in postacute optic neuritis. Ann Neurol. 2008;64:325–31.

    Article  PubMed  Google Scholar 

  53. Sepulcre J, Murie-Fernandez M, Salinas-ALaman A, et al. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology. 2007;68(18):1488–94.

    Article  PubMed  Google Scholar 

  54. Saidha S, Sotirchos ES, Oh J, et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol. 2013;70(1):34–43.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Naismith RT, Xu J, Tutlam NT, Trinkaus K, Cross AH, Song SK. Radial diffusivity in remote optic neuritis discriminates visual outcomes. Neurology. 2007;74:1702–10.

    Article  Google Scholar 

  56. Van der Walt A, Kolbe SC, Wang YE, et al. Optic nerve diffusion tensor imaging after acute optic neuritis predicts axonal and visual outcomes. PLoS One. 2013;8:e83825.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Zhang Y, Metz LM, Scott JN, Trufyn J, Fick GH, Costello F. MRI texture heterogeneity in the optic nerve predicts visual recovery after acute optic neuritis. Neuroimage Clin. 2014;4:302–7.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hickman S, Toosy A, Jones S, Altmann D, Miszkiel K, et al. Serial magnetization transfer imaging in acute optic neuritis. Brain. 2004;127:692.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, van der Walt A, Paine M. Optic nerve magnetisation transfer ratio after acute optic neuritis predicts axonal and visual outcomes. PLoS One. 2012;7:e52291.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Gallo A, Esposito F, Sacco R, et al. Visual resting-state network in relapsing remitting MS with and without previous optic neuritis. Neurology. 2012;79:1458–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Costello MD, FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Costello, F. (2016). OCT and Early MS: Clinically Isolated Syndromes (CIS). In: Petzold, A. (eds) Optical Coherence Tomography in Multiple Sclerosis. Springer, Cham. https://doi.org/10.1007/978-3-319-20970-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20970-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20969-2

  • Online ISBN: 978-3-319-20970-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics