Skip to main content

Forced External Flow Over a Rotating Disk

  • Chapter
  • First Online:
Modelling of Convective Heat and Mass Transfer in Rotating Flows

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 1733 Accesses

Abstract

This chapter presents results of the analytical and numerical modelling of external flow over a rotating disk and outward flow between parallel co-rotating disks are described and compared with experimental data for the cases of (a) disk rotation in a fluid subject to solid-body rotation, (b) accelerating non-rotating radial flow, and (c) centrifugal swirling radial flow in a gap between parallel co-rotating disks. The present integral method demonstrates a higher accuracy at the expense of more accurate approximation of the radial velocity and temperature profiles in the boundary layer and provides also a good match of the simulations with known experimental data for rotation cavities. For negative or approximately constant radial distributions of the wall temperature, negative Nusselt numbers (wall heat flux direction opposite to that in the source region) can emerge in the area of the Ekman-type layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lokai VI, Bodunov MN, Zhuikov VV, Shchukin AV (1985) Heat transfer in cooled parts of aircraft gas-turbine engines. Izdatel’stvo Mashinostroenie, Moscow, USSR (in Russian)

    Google Scholar 

  2. Owen JM, Rogers RH (1989) Flow and heat transfer in rotating-disc systems. Volume 1: Rotor-stator systems. Research Studies Press Ltd., Taunton (Somerset, England)

    Google Scholar 

  3. Owen JM, Rogers RH (1995) Flow and heat transfer in rotating-disc systems. Volume 2: Rotating cavities. Research Studies Press Ltd., Taunton (Somerset, England)

    Google Scholar 

  4. Shvets IT, Dyban EP (1974) Air cooling of gas turbine parts. Naukova Dumka, Kiev, Ukraine (in Russian)

    Google Scholar 

  5. Schlichting G (1968) Boundary-layer theory. McGraw-Hill Book Company, New York

    Google Scholar 

  6. Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Shevchuk IV, Delas NI (2005) Aerodynamics and turbulent flow heat exchange in the rotary disk air cleaner. Heat Transfer Res 36(1–2):104–113

    Article  Google Scholar 

  8. Karman Th. von. (1921) Über laminare und turbulente Reibung. Z Angew Math Mech 1(4):233–252

    Google Scholar 

  9. Newman BG (1983) Flow and heat transfer on a disk rotating beneath a forced vortex. AIAA J 21(8):1066–1070

    Article  MATH  Google Scholar 

  10. Shevchuk IV, Khalatov AA (1997) Integral method for calculating the characteristics of a turbulent boundary layer on a rotating disk: quadratic approximation of the tangent of the flow swirl angle. Heat Transfer Res 28(4–6):402–413

    Article  Google Scholar 

  11. Shevchuk IV, Buschmann MH (2005) Rotating disk heat transfer in a fluid swirling as a forced vortex. Heat Mass Transfer 41(12):1112–1121

    Article  Google Scholar 

  12. Saniei N, Yan XT, Schooley WW (1998) Local heat transfer characteristics of a rotating disk under jet impingement cooling. In: Proceedings of 11th IHTC heat transfer 1998 (Kyongju, Korea), vol 5, pp 445–450

    Google Scholar 

  13. Dyban YP, Mazur AI (1982) Convective heat transfer in jet flows past bodies. Naukova Dumka, Kiev, USSR (in Russian)

    Google Scholar 

  14. Lallave JC, Rahman MM, Kumar A (2007) Numerical analysis of heat transfer on a rotating disk surface under confined liquid jet impingement. Int J Heat Fluid Flow 28(4):720–734

    Article  Google Scholar 

  15. Rahman MM, Lallave JC (2007) A comprehensive study of conjugate heat transfer during free liquid jet impingement on a rotating disk. Numer Heat Transfer A Appl 51(11):1041–1064

    Article  Google Scholar 

  16. Rahman MM, Lallave JC (2008) Thermal transport during liquid jet impingement from a confined spinning nozzle. AIAA J Thermophys Heat Transfer 22(2):210–218

    Article  Google Scholar 

  17. Şara ON, Erkmen J, Yapici S, Çopur M (2008) Electrochemical mass transfer between an impinging jet and a rotating disk in a confined system. Int Commun Heat Mass Transfer 35(3):289–298

    Article  Google Scholar 

  18. Cebeci T, Bradshaw P (1984) Physical and computational aspects of convective heat transfer. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver and Boyd, Edinburgh, UK

    Google Scholar 

  20. Kochin NE, Kibel IA, Roze NV (1964) Theoretical hydrodynamics. Interscience, New York

    Google Scholar 

  21. Brdlik PM, Savin VK (1966) Heat transfer in the vicinity of the stagnation point in an axisymmetric jet flowing over flat surfaces normal to the flow. J Eng Phys Thermophys 10(4):241–245

    Article  Google Scholar 

  22. Han B, Goldstein RE (2001) Jet-impingement heat transfer in gas turbine systems. Ann N Y Acad Sci 234:147–161

    Google Scholar 

  23. Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6(2):111–134

    Article  Google Scholar 

  24. Bogdan Z (1982) Cooling of a rotating disk by means of an impinging jet. In: Proceedings of 7th IHTC heat transfer 1982 (Munich, Germany), vol 3, pp 333–336

    Google Scholar 

  25. Brodersen S, Metzger DE, Fernando HJS (1996) Flows generated by the impingement of a jet on a rotating surface. Part I. Basic flow patterns. Trans ASME J Fluids Eng 118 (1): 61–67

    Google Scholar 

  26. Chen Y-M, Lee W-T, Wu S-J (1998) Heat (mass) transfer between an impinging jet and a rotating disk. Heat Mass Transfer 34(2–3):101–108

    Google Scholar 

  27. Cheng W-T, Lin H-T (1994) Unsteady and steady mass transfer by laminar forced flow against a rotating disk. Wärme und Stoffübertragung 30(2):101–108

    Google Scholar 

  28. He Y, Ma LX, Huang S (2005) Convection heat and mass transfer from a disk. Heat Mass Transfer 41(8):766–772

    Article  Google Scholar 

  29. Koh JCY, Price JF (1967) Non-similar boundary layer heat transfer of a rotating cone in forced flow. Trans ASME J Heat Transfer 89:139–145

    Article  Google Scholar 

  30. Metzger DE, Bunker RS, Bosch G (1991) Transient liquid crystal measurements of local heat transfer on a rotating disk with jet impingement. Trans ASME J Turbomach 113(1):52–59

    Article  Google Scholar 

  31. Minagawa Y, Obi S (2004) Development of turbulent impinging jet on a rotating disk. Int J Heat Fluid Flow 25(5):759–766

    Article  Google Scholar 

  32. Popiel CO, Boguslawski L (1986) Local heat transfer from a rotating disk in an impinging round jet. Trans ASME J Heat Transfer 108(2):357–364

    Article  Google Scholar 

  33. Saniei N, Yan X (1998) Effect of jet location on impingement cooling of a rotating disk. Proc ASME HTD 361–1:203–210

    Google Scholar 

  34. Saniei N, Yan XT (2000) An experimental study of heat transfer from a disk rotating in an infinite environment including heat transfer enhancement by jet impingement cooling. J Enhanced Heat Transfer 7:231–245

    Article  Google Scholar 

  35. Soong CY, Chyuan CH (1998) Similarity solutions of mixed convection heat and mass transfer in combined stagnation and rotation-induced flows over a rotating disk. Heat Mass Transfer 34(2–3):171–180

    Article  Google Scholar 

  36. Theodorsen Th, Regier A (1944) Experiments on drag of revolving discs, cylinders and streamline rods at high speeds. NASA Report No 793

    Google Scholar 

  37. Tien CL, Campbell DT (1963) Heat and mass transfer from rotating cones. J Fluid Mech 17:105–112

    Article  MATH  Google Scholar 

  38. Tien CL, Tsuji IJ (1964) Heat transfer by laminar forced flow against a non-isothermal rotating disk. Int J Heat Mass Transfer 7(2):247–252

    Article  Google Scholar 

  39. Tien CL, Tsuji IJ (1965) A theoretical analysis of laminar forced flow and heat transfer about a rotating cone. Trans ASME J Heat Transfer 87(2):184–190

    Article  Google Scholar 

  40. Tifford AN, Chu ST (1954) On the flow and temperature fields in forced flow against a rotating disc. In: Proceedings of 2nd US national congress of applied mechanics (Ann Arbor, Michigan, USA), pp 793–800

    Google Scholar 

  41. Mabuchi I, Tanaka T, Sakakibara Y (1971) Studies of convective heat transfer from a rotating disk (5th Report, Experiment on the laminar heat transfer from a rotating isothermal disk in a uniformed forced stream). Bull JSME 14(72):581–589

    Article  Google Scholar 

  42. Astarita T, Cardone G (2008) Convective heat transfer on a rotating disk with a centred impinging round jet. Int J Heat Mass Transfer 51(7–8):1562–1572

    Article  Google Scholar 

  43. Helcig C, aus der Wiesche S (2013) The effect of the incidence angle on the flow over a rotating disk subjected to forced air streams. In: Proceedings of 2013 FEDSM (Incline Village, Nevada, USA), Paper FEDSM2013-16360

    Google Scholar 

  44. Trinkl CM, Bardas U, Weyck A, aus der Wiesche S (2011) Experimental study of the convective heat transfer from a rotating disc subjected to forced air streams. Int J Thermal Sci 50 (1):73–80

    Google Scholar 

  45. aus der Wiesche S (2010) Heat transfer from rotating discs with finite thickness subjected to outer air streams. In: Proceedings of IHTC14 (Washington, DC, USA), Paper IHTC14-22558

    Google Scholar 

  46. Truckenbrodt E (1954) Die turbulente Strömung an einer angeblasenen rotierenden Scheibe. Z Angew Math Mech 34:150–162

    Article  MATH  Google Scholar 

  47. Shevchuk IV (2002) Laminar heat transfer in a rotating disk under conditions of forced air impingement cooling: approximate analytical solution. High Temp 40(5):684–692

    Article  MathSciNet  Google Scholar 

  48. Shevchuk IV, Saniei N, Yan XT (2002) Impinging jet heat transfer over a rotating disk: exact solution and experiments. In: Proceedings of 8th AIAA/ASME joint thermophys heat transfer conference (St. Louis, Missouri, USA), Paper AIAA 2002–3015

    Google Scholar 

  49. Shevchuk IV (2003) Exact solution of the heat transfer problem for a rotating disk under uniform jet impingement. Fluid Dyn 38(1):18–27

    Article  MathSciNet  MATH  Google Scholar 

  50. Shevchuk IV, Saniei N, Yan XT (2003) Impingement heat transfer over a rotating disk: integral method. AIAA J Thermophys Heat Transfer 17(2):291–293

    Article  Google Scholar 

  51. Helcig C, aus der Wiesche S, Shevchuk IV (2014) Internal symmetries, fundamental invariants and convective heat transfer from a rotating disc. In: Proceedings of IHTC-15, (Kyoto, Japan), Paper IHTC15-8483

    Google Scholar 

  52. Sparrow EM, Geiger GT (1985) Local and average heat transfer characteristics for a disk situated perpendicular to a uniform flow. Trans ASME J Heat Transfer 107(2):321–326

    Article  Google Scholar 

  53. Abrahamson S, Lonnes S (1994) An improved model for radial injection between corotating disks. Trans ASME J Fluids Eng 116(2):255–257

    Article  Google Scholar 

  54. Chen JX, Gan X, Owen JM (2001) Heat transfer from air-cooled contra-rotating disks. Trans ASME J Turbomach 119(1):61–67

    Article  Google Scholar 

  55. Dyban YP, Kabkov VI (1979) Experimental study of flow of air in a gap formed by two rotating disks. Fluid Mech-Soviet Res 8(4):99–104

    Google Scholar 

  56. Kapinos VM (1964) Hydraulic resistance and heat transfer of a free disc with a cob. Izvestiya vuzov. Energetika 11:85–92 (in Russian)

    Google Scholar 

  57. Kapinos VM (1965) Heat transfer of a disk rotating in a housing. Izvestiya vuzov. Aviatsyonnaya Tekhnika 2:76–86 (in Russian)

    Google Scholar 

  58. Kapinos VM (1965) Effect of a radial gradient of a relative circumferential velocity component on heat transfer in forced flow between two rotating disks. Izvestiya vuzov. Energetika 3:111–120 (in Russian)

    Google Scholar 

  59. Kapinos VM, Pustovalov VN, Rud’ko AP (1971) Heat transfer in a coolant flow from a center to a periphery between two rotating disks. Izvestiya vuzov. Energetika 6:116–124 (in Russian)

    Google Scholar 

  60. Karabay H, Chen J-X, Pilbrow R, Wilson M, Owen JM (1999) Flow in a “cover-plate” preswirl rotor-stator system. Trans ASME J Turbomach 121(1):161–166

    Google Scholar 

  61. Karabay H, Wilson M, Owen JM (2001) Predictions of effect of swirl on flow and heat transfer in a rotating cavity. Int J Heat Fluid Flow 22:143–155

    Article  Google Scholar 

  62. Kilic M, Owen JM (2003) Computation of flow between two disks rotating at different speeds. Trans ASME J Turbomach 125(2):394–400

    Article  Google Scholar 

  63. Morse AP (1988) Numerical prediction of turbulent flow in rotating cavities. Trans ASME J Turbomach 110(2):202–215

    Article  MathSciNet  Google Scholar 

  64. Morse AP (1991) Assessment of laminar-turbulent transition in closed disc geometries. Trans ASME J Turbomach 113(2):131–138

    Article  MathSciNet  Google Scholar 

  65. Northrop A, Owen JM (1988) Heat transfer measurements in rotating-disc systems. Part 2: The rotating cavity with a radial outflow of cooling air. Int J Heat Fluid Flow 9(1):27–36

    Google Scholar 

  66. Northrop A (1984) Heat transfer in a cylindrical rotating cavity. D. Phil. thesis. University of Sussex, Brighton, UK

    Google Scholar 

  67. Pilbrow R, Karabay H, Wilson M, Owen JM (1999) Heat transfer in a ‘cover-plate’ pre-swirl rotating-disc system. Trans ASME J Turbomach 121(2):249–256

    Article  Google Scholar 

  68. Prata AT, Pilichi CDM, Ferreira RTS (1995) Local heat transfer in axially feeding radial flow between parallel disks. Trans ASME J Heat Transfer 117(1):47–53

    Article  Google Scholar 

  69. Yan Y, Gord MF, Lock GD, Owen JM (2003) Fluid dynamics of a pre-swirl rotor-stator system. Trans ASME J Turbomach 125(4):641–647

    Article  Google Scholar 

  70. Shevchuk IV (1998) The effect of distribution of radial velocity in the flow core on heat transfer under conditions of centrifugal flow in a gap between parallel rotating disks. High Temp 36(6):972–974

    Google Scholar 

  71. Shevchuk IV (1999) Integral method of calculation of a turbulent centrifugal underswirl flow in a gap between parallel rotating disks. Heat Transfer Res 30(4–6):238–248

    Article  Google Scholar 

  72. Shevchuk IV (1999) Effect of wall-temperature distribution on heat transfer in centrifugal flow in the gap between parallel rotating disks. J Eng Phys Thermophys 72(5):896–899

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Shevchuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shevchuk, I.V. (2016). Forced External Flow Over a Rotating Disk. In: Modelling of Convective Heat and Mass Transfer in Rotating Flows. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20961-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20961-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20960-9

  • Online ISBN: 978-3-319-20961-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics