Skip to main content

Breeding Open-Pollinated, Hybrid and Transgenic Outcrossing Species

  • Chapter
  • First Online:
Plant Breeding in the Omics Era
  • 1238 Accesses

Abstract

At least 50 % of crops are outcrossing species whose reproductive system includes devices promoting it. These species exhibit mild to severe inbreeding depression and significant heterosis. There are composite, hybrid, and synthetic cultivars of outcrossing species. Inbred line development, population improvement, genetic engineering, and DNA marker-aided breeding are used for the genetic enhancement of outcrossing species. Maize is an outcrossing species model system for genetics and breeding. Many of its traits are multigenic and show small effects. Maize breeding success depends on developing adapted germplasm with desired traits for various end-users. DNA markers have been used for linkage and association-based mapping, and to identify marker–trait association, but single-nucleotide polymorphisms are preferred today for maize genetic enhancement. Transgenic maize cultivars widely grown by farmers include insect resistance and herbicide tolerance alone or stacked. Cotton may have up to 30 % of outcrossing and its domesticated diploid and tetraploid species show the lint or the spinnable seed fibers that result from human selection. The crossbreeding methods for cotton include mass selection, pedigree, backcrossing, hybrids to exploit heterosis, and recurrent selection. Biotechnology led to developing transgenic cultivars, which account for 81 % of the world’s cotton acreage plantings due to their significant production gains, plus economic, environmental, health, and social benefits. Cassava is a vegetatively propagated crop whose tuberous roots are used as a main staple by many millions of people in the tropics. This root crop is an outcrossing species because of monoecy and protogyny. A sort of mass phenotypic recurrent selection is its main crossbreeding scheme. Cassava breeding may become more efficient through aid by DNA markers, while genetic engineering is a complementary approach for cassava germplasm enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalo G, Tongoona P, Derera J, Edema R (2009) A comparative analysis of conventional and marker-assisted selection methods in breeding maize streak virus resistance in maize. Crop Sci 49:509–520

    Article  Google Scholar 

  • Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön C-C (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Alves AAC, Manthey L, Isbell T, Ellis D, Jenderek MM (2014) Diversity in oil content and fatty acid profile in seeds of wild cassava germplasm. Ind Crop Prod 60:310–315

    Article  CAS  Google Scholar 

  • Azmach G, Gedil M, Menkir A, Spillane C (2013) Marker-trait association analysis offunctional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol 13:227. http://www.biomedcentral.com/1471-2229/13/227. Accessed 23 March 2015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897

    Article  CAS  PubMed  Google Scholar 

  • Balint-Kurti P, Blanco M, Milard M, Duvick S, Holland J, Clements M, Holley R, Carson ML, Goodman M (2006) Registration of 20 GEM maize breeding germplasm lines adapted to the southern U.S. Crop Sci 46:996–998

    Article  Google Scholar 

  • Bao Y, Hu G, Flagel LE, Salmon A, Bezanilla M, Paterson AH, Wang Z, Wendel JF (2011) Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci U S A 108:21152–21157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bardol N et al (2013) Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism. Theor Appl Genet 126:2717–2736

    Article  CAS  PubMed  Google Scholar 

  • Barwale Zehr U (ed) (2010) Cotton. Biotechnology advances. Biotechnology in agriculture and forestry 63. Springer, Heidelberg

    Google Scholar 

  • Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2009) Should maize doubled haploids be induced among F1 or F2 plants? Theor Appl Genet 119:255–262

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Cach NT, Perez JC, Lenis JI, Calle F, Morante N, Ceballos H (2005) Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Hered 96:586–592

    Article  CAS  PubMed  Google Scholar 

  • Cairns J et al (2012) Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron 114:1–58

    Article  CAS  Google Scholar 

  • Calle F, Perez JC, Gaitán W, Morante N, Ceballos H, Llano G, Alvarez E (2005) Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144:177–186

    Article  Google Scholar 

  • Castiglioni P et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceballos H, Iglesias CA, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516

    Article  CAS  PubMed  Google Scholar 

  • Chavez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133

    Article  Google Scholar 

  • Chen D, Ye G, Yang C, Chen Y, Wu Y (2005) Effect of introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crop Res 92:1–9

    Article  Google Scholar 

  • Chia J-M et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    Article  CAS  PubMed  Google Scholar 

  • Choudhary B, Gaur K (2011) Adoption and impact of Bt cotton in India, 2002–2010. ISAAA Biotech Information Center, International Service for the Acquisition of Agri-biotech Applications, New Delhi

    Google Scholar 

  • Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1407401112

    Google Scholar 

  • CIAT (2012) The cassava handbook. Centro Internacional de Agricultura Tropical, Cali

    Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382

    Article  Google Scholar 

  • Coppens d’Eeckenbrugge G, Lacape J-M (2014) Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLoS ONE 9:e107458. doi:10.1371/journal.pone.0107458

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crossa J (1989) Theoretical considerations for the introgression of exotic germplasm into adapted maize populations. Maydica 34:53–62

    Google Scholar 

  • Crow JF, Kermicle J (2002) Oliver Nelson and quality protein maize. Genetics 160:819–821

    PubMed Central  PubMed  Google Scholar 

  • de Oliveira EJ, de Resende MDV, da Silva SV, Fortes Ferreira C, Fachardo Oliveira CA, da Silva MS, de Oliveira LS, Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187:263–276

    Article  CAS  Google Scholar 

  • de Oliveira EJ, Fortes Ferreira C, da Silva SV, Nunes de Jesus O, Fachardo Oliveira GA, da Silva MS (2014) Potential of SNP markers for the characterization of Brazilian cassava germplasm. Theor Appl Genet 127:1423–1440

    Article  PubMed  CAS  Google Scholar 

  • Dixon AGO et al (2003) Cassava: from poor farmer’s crop to pacesetter of African rural development. Chron Hortic 43(4):8–15

    Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    Article  CAS  PubMed  Google Scholar 

  • Dudley JW (2007) From means to QTL: the Illinois long-term selection experiment as a case study in quantitative genetics. Crop Sci 47:S20–S31

    Article  CAS  Google Scholar 

  • Duvick DN (2005a) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  • Duvick DN (2005b) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Fabrick JA, Ponnuraj J, Singh A, Tanwar RK, Unnithan GC, Yelich AJ, Li X, Carrière Y, Tabashnik BE (2014) Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in India. PLoS ONE 9(5):e97900. doi:10.1371/journal.pone.0097900

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feuillet C, Eversole K (2009) Solving the maze. Science 326:1071–1072

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Chai Y, Zhou Y, Yang X, Warburton ML, Xu S, Cai Y, Zhang D, Li J, Yan J (2013) Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet 126:923–935

    Article  CAS  PubMed  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Gilbert N (2014) Cross-bred crops get fit faster. Nature 513:292

    Article  CAS  PubMed  Google Scholar 

  • Goodman MM (1999) Broadening the genetic diversity in maize breeding by use of exotic germplasm In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA-CSSA-SSSA, Madison, pp 139–148

    Google Scholar 

  • Gore MA et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Gunaratna NS, De Groote H, Nestel P, Pixley KV, McCabe GP (2009) A meta-analysis of community-based studies on quality protein maize. Food Pol 35:202–210

    Article  Google Scholar 

  • Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149–2158

    Article  PubMed  Google Scholar 

  • Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Habben JE et al (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hagenbucher S, Wäckers FL, Wettstein FE, Olson DM, Ruberson JR, Romeis J (2013) Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids. Proc R Soc B 280:20130042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hahn SK, Terry ER, Leuschner K, Akobundu IO, Okali C, Lal R (1979) Cassava improvement in Africa. Field Crop Res 2:193–226

    Article  Google Scholar 

  • Hahn SK, Terry ER, Leuschner K (1980a) Breeding cassava for resistance to cassava mosaic disease. Euphytica 29:673–683

    Article  Google Scholar 

  • Hahn SK, Howland AK, Terry ER (1980b) Correlated resistance of cassava to mosaic and bacterial blight diseases. Euphytica 29:305–311

    Article  Google Scholar 

  • Hahn SK, Isoba JCG, Ikotun T (1989) Resistance breeding in root and tuber crops at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. Crop Prot 8:147–168

    Google Scholar 

  • Harjes CE et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu G, Koh J, Yoo M-J, Pathak D, Chen S, Wendel JF (2014) Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). Planta 240:1237–1251

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Hu J, Rozelle S, Qiao F, Pray CE (2003) Transgenic varieties and productivity of smallholder cotton farmers in China. Aus J Agric Resour Econ 46:367–387

    Article  Google Scholar 

  • Hufford MB et al (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    Article  CAS  PubMed  Google Scholar 

  • Hung H-Y (2011) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109:E1913–E1921

    Article  Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    Article  CAS  PubMed  Google Scholar 

  • IITA (1992) Sustainable food production in sub-Saharan Africa. 1. IITA’s contribution. International Institute of Tropical Agriculture, Ibadan

    Google Scholar 

  • Jennings DL, Iglesias C (2002) Breeding for crop improvement. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp 149–166

    Chapter  Google Scholar 

  • Jiao W et al (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815

    Article  CAS  PubMed  Google Scholar 

  • Jones WO (1959) Manioc in Africa. Stanford University Press, Stanford

    Google Scholar 

  • Kamau J, Melis R, Laing M, Derera J, Shanahan P, Ngugi E (2010) Combining the yield ability and secondary traits of selected cassava genotypes in the semi-arid areas of Eastern Kenya. J Plant Breed Crop Sci 2:181–191

    Google Scholar 

  • Kathage J, Qaim M (2012) Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc Natl Acad Sci U S A 109:11652–11656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawano K (2003) Thirty years of cassava breeding for productivity. Biological and social factors for success. Crop Sci 43:1325–1335

    Article  Google Scholar 

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Kindiger B, Hamann S (1993) Generation of haploids in maize: a modification of the indeterminate gametophyte (ig) system. Crop Sci 33:342–344

    Article  Google Scholar 

  • Kouser S, Qaim M (2011) Impact of Bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol Econ 70:2105–2113

    Article  Google Scholar 

  • Krivanek AF, De Groote H, Gunaratna NS, Diallo AO, Friesen D (2007) Breeding and disseminating quality protein maize (QPM) for Africa. Afr J Biotechnol 6:312–324

    CAS  Google Scholar 

  • Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford TR, Dudley JW (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee EA, Kannenberg LW (2004) Effect of inbreeding method and selection criteria on inbred and hybrid performance. Maydica 49:191–197

    Google Scholar 

  • Li L, Wegenast T, Li H, Dhillon BS, Longin CFH, Xu X, Melchinger AE, Chen S (2011) Estimation of quantitative genetic and stability parameters in maize under high and low N levels. Maydica 56:25–34

    Google Scholar 

  • Li F et al (2014a) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhu Y, Jin S, Zhang X (2014b) Pyramiding Bt genes for increasing resistance of cotton to two major lepidopteran pests: Spodoptera litura and Heliothis armigera. Acta. Physiol Plant 36:2717–2727

    CAS  Google Scholar 

  • Longin CFH, Utz HF, Reif JC, Schipprack W, Melchinger AE (2006) Hybrid maize breeding with doubled haploids: I. One-stage versus two-stage selection for testcross performance. Theor Appl Genet 112:903–912

    Article  PubMed  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  CAS  PubMed  Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ, Hart JJ, Rutzke MA, Kochian LV, Glahn RP, Hoekenga OA (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6:20429. doi:10.1371/journal.pone.0020429

    Article  CAS  Google Scholar 

  • Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG Jr, Okechukwu R, Dixon AGO, Kulakow P, Jannink J-L (2013) Relatedness and genotype × environment interaction affect prediction accuracies in genomic selection: a study in cassava. Crop Sci 53:1–14

    Article  Google Scholar 

  • Malik A, Ashraf J, Iqbal MZ, Khan AA, Qayyum A, Abid MA, Noor E, Ahmad MQ, Abbasi GH (2014) Molecular markers and cotton genetic improvement: current status and future prospects. Sci World J 2014:607091. http://dx.doi.org/10.1155/2014/607091. Accessed 23 March 2015

    Google Scholar 

  • Malosetti M, Ribaut JM, Vargas M, Crossa J, van Eeuwijk FA (2008) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161:241–257

    Article  Google Scholar 

  • Manyong VM, Dixon AGOD, Makinde KO, Bokanga M, Whyte J (2000). The contribution of IITA-improved cassava to food security in sub-Saharan Africa: an impact study. International Institute of Tropical Agriculture, Ibadan

    Google Scholar 

  • Martins CM, Beyene G, Hofs J-L, Krüger K, Van der Vyver C, Schlüter U, Kunert KJ (2008) Effect of water-deficit stress on cotton plants expressing the Bacillus thuringiensis toxin. Ann Appl Biol 152:255–262

    Article  CAS  Google Scholar 

  • Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013) Genomewide predictions from maize single-cross data. Theor Appl Genet 126:13–22

    Article  PubMed  Google Scholar 

  • Mayor PJ, Bernardo B (2009) Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci 49:1719–1725

    Article  Google Scholar 

  • McMullen MD et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Mertz ET, Bates LS Nelson OE (1964) Mutant gene that changes the protein composition and increases the lysine content of maize endosperm. Science 145:279–280

    Article  CAS  PubMed  Google Scholar 

  • Meseka S, Menkir A, Obeng-Antwi K (2015) Exploitation of beneficial alleles from maize (Zea mays L.) landraces to enhance performance of an elite variety in water stress environments. Euphytica 201:149–160

    Article  CAS  Google Scholar 

  • Messias RDS, Galli V, Silva SD, Schirmer MA, Rombaldi CV (2015) Micronutrient and functional compounds biofortification of maize grains. Crit Rev Food Sci Nutr 55:123–139

    Article  CAS  Google Scholar 

  • Messina C, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield–trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62:855–868

    Article  CAS  PubMed  Google Scholar 

  • Mir C et al (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126:2671–2682

    Article  CAS  PubMed  Google Scholar 

  • Moose S, Below FE (2009) Biotechnology approaches to improving maize nitrogen use efficiency. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Biotechnology in agriculture and forestry 63. Springer-Verlag, Berlin, pp 65–77

    Chapter  Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137:111–118

    Article  CAS  Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, Bhat JS, Prasanna BM, Gupta HS (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS ONE 9(12):e113583. doi:10.1371/journal.pone.0113583

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naqvi S et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nass LL, Paterniani E (2000) Pre-breeding: a link between genetic resources and maize breeding. Sci Agric 57:581–587

    Article  Google Scholar 

  • Nassar NMA (1999) Cassava, Manihot esculenta Crantz genetic resources: their collection, evaluation, and manipulation. Adv Agron 69:179–230

    Article  Google Scholar 

  • Nassar NMA, Ortiz R (2007) Cassava improvement: challenges and impact. J Agric Sci Camb 145:163–171

    Article  Google Scholar 

  • Nassar NMA, Ortiz R (2009) Cassava genetic resources: manipulation for crop improvement. Plant Breed Rev 31:247–275

    CAS  Google Scholar 

  • Nassar N, Ortiz R (2010) Breeding cassava to feed the poor. Sci Am 2010:78–84

    Article  Google Scholar 

  • Nweke FI, Spencer DSC, Lynam JK (2002) The cassava transformation: Africa’s best-kept secret. Michigan State University Press, East Lansing

    Google Scholar 

  • Obaidi M, Johnson BE, Van Vleck LD, Kachman SD, Smith OS (1998) Family per se response to selfing and selection in maize based on testcross performance: a simulation study. Crop Sci 38:367–371

    Article  Google Scholar 

  • Okogbenin E et al (2007) Marker-assisted introgression of resistance to cassava mosaic disease into Latin American germplasm for the genetic improvement of cassava in Africa. Crop Sci 47:1895–1904

    Article  Google Scholar 

  • Ordas B, Malvar RA, Hill WG (2008) Genetic variation and quantitative trait loci associated with developmental stability and the environmental correlation between traits in maize. Genet Res Camb 90:385–395

    Article  CAS  PubMed  Google Scholar 

  • Ordás B, Caicedo M, Romay MC, Revilla P, Ordás A (2012) Effect of visual selection during the development of inbred lines of maize. Crop Sci 52:2538–2545

    Article  Google Scholar 

  • Ortiz R, Dochez C, Moonan F, Asiedu RA (2006) Breeding vegetatively propagated crops. In: Lamkey K, Lee M (eds) Plant breeding. Blackwell Publishing, Ames, pp 251–268

    Google Scholar 

  • Ortiz R, Pérez Fernandez M, Dixon J, Hellin J, Iwanaga M (2007) Specialty maize: global horticultural crop. Chron Hortic 47(4):20–25

    Google Scholar 

  • Ortiz R, Taba S, Chávez Tovar VH, Mezzalama M, Xu Y, Yan J, Crouch JH (2010) Conserving and enhancing maize genetic resources as global public goods—a perspective from CIMMYT. Crop Sci 50:13–28

    Article  Google Scholar 

  • Page JT, Huynh MD, Liechty ZS, Grupp K, Stelly D, Hulse AM, Ashrafi H, Van Deynze A, Wendel JF Udall JA (2013) Insights into the evolution of cotton diploids and polyploids from whole-genome re-sequencing. G3: Genes Genomes Genet 3:1809–1818

    Article  CAS  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci U S A 101:9885–9890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer SA, Clapham AJ, Rose P, Freitas FO, Owen BD, Beresford-Jones D, Moore JD, Kitchen JL, Allaby RG (2012) Archaeogenomic evidence of punctuated genome evolution in Gossypium. Mol Biol Evol 29:2031–2038

    Article  CAS  PubMed  Google Scholar 

  • Parsa S, Medina C, Rodríguez V (2015) Sources of pest resistance in cassava. Crop Prot 68:79–84

    Article  Google Scholar 

  • Paterson AH (ed) (2010) Genetics and genomics of cotton. Springer Science + Business Media, LLC, New York

    Google Scholar 

  • Paterson AH et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Perez JC, Ceballos H, Calle F, Morante N, Gaitán W, Llano G, Alvarez E (2005) Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145:77–85

    Article  CAS  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855

    Article  CAS  PubMed  Google Scholar 

  • Prochnik S et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puonti-Kaerlas J (2001) Molecular biology of cassava. Hortic Rev 26:85–159

    CAS  Google Scholar 

  • Qiu F, Liang Y, Li Y, Liu Y, Wang L, Zheng Y (2014) Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize. Curr Plant Biol 1:83–90

    Article  Google Scholar 

  • Rabbi I, Hamblin M, Gedil M, Kulakow P, Ferguson M, Ikpan AS, Ly L, Jannink J-L (2014a) Genetic mapping using genotyping-by-sequencing in the clonally-propagated cassava. Crop Sci 54:1384–1396

    Article  CAS  Google Scholar 

  • Rabbi IY, Hamblin M, Lava Kumar P, Gedil MA, Ikpan AS, Jannink J-L, Kulakow P (2014b) High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virology 186:87–96

    CAS  Google Scholar 

  • Raemakers K, Scheuder M, Suurs L, Furrer-Verhorst H, Vincken JP, de Vetten N, Jacobsen E, Visser GF (2005) Improved cassava starch by antisense inhibition of granule-bound starch synthase I. Mol Breed 16:163–172

    Article  CAS  Google Scholar 

  • Ribaut J-M, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Ricent R et al (2014) Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production. Theor Appl Genet 127:2313–2331

    Article  CAS  Google Scholar 

  • Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor Appl Genet 126:2835–2848

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012a) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci U S A 109:8872–8877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder A, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012b) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Technow F, Melchinger AE (2012c) Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics 13:452. http://www.biomedcentral.com/1471-2164/13/452. Accessed 23 March 2015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink J-L, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–503

    Article  PubMed Central  PubMed  Google Scholar 

  • Rincent R et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson RA (1995) Return to resistance: breeding crops to reduce pesticide dependence. International Development Research Center, Ottawa, Ontario, Canada—agAccess, Davis

    Google Scholar 

  • Rogers D, Appan S (1973) Manihot, Manihotoides (Euphorbiaceae). In: Flora Neotropica Monograph 13 (ed) A computer assisted study. Organization for Flora Neotropica. Hafner, New York

    Google Scholar 

  • Salhuana W, Pollak L (2006) Latin American maize project (LAMP) and germplasm enhancement of maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–355

    Google Scholar 

  • Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1114

    Article  CAS  PubMed  Google Scholar 

  • Schön CC, Dhillon BS, Utz HF, Melchinger AE (2010) High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120:321–332

    Article  PubMed  Google Scholar 

  • Šimić D, Drinić SM, Zdunić Z, Jambrović A, Ledenčan T, Brkić J, Brkić A, Brkić I (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103:47–54

    Article  PubMed  CAS  Google Scholar 

  • Siritunga D, Sayre R (2004) Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Mol Biol 56:661–669

    Article  CAS  PubMed  Google Scholar 

  • Smith JSC, Smith OS, Lamkey KR (2005) Maize breeding. Maydica 50:185–192

    Google Scholar 

  • Stich B, Utz HF, Piepho H-P, Maurer HP, Melchinger AE (2010) Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize. Theor Appl Genet 120:553–561

    Article  PubMed Central  PubMed  Google Scholar 

  • Taba S, Díaz J, Franco J, Crossa J, Eberhart SA (1999) A core subset of LAMP from the Latin American maize project. CD-Rom. Centro Internacional de Mejoramiento de Maíz y Trigo, México D.F

    Google Scholar 

  • Tabashnik BE, Van Rensburg JBJ, Carrière Y (2011) Field-evolved insect resistance Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2015

    Article  Google Scholar 

  • Tako E, Hoekenga OA, Kochian LV, Glahn RP (2013) High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutrition J 12:3. http://www.nutritionj.com/content/12/1/3. Accessed 23 March 2015

  • Tang S et al (2015) Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213

    Article  CAS  Google Scholar 

  • Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. G3: Genes Genomes Genet 3:197–203

    Article  Google Scholar 

  • Technow F, Schrag TA, Schipprack, Melchinger AE (2014) Identification of key ancestors of modern germplasm in a breeding program of maize. Theor Appl Genet 127:2545–2553

    Google Scholar 

  • Thiemann A, Fu J, Seifert F, Grant-Downton RT, Schrag TA, Pospisil H, Frisch M, Melchinger AE, Scholten S (2014) Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. BMC Plant Biol 14:88. http://www.biomedcentral.com/1471-2229/14/88

  • Van Deynze A, Stoffel K, Lee M, Wilkins TA, Kozik A, Cantrell RG, Yu JZ, Kohel RJ, Stelly DM (2009) Sampling nucleotide diversity in cotton. BMC Plant Biol 9:125. doi:10.1186/1471-2229-9-125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Heerwaarden J, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci U S A 109:12420–12425

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanderschuren H, Moreno I, Anjanappa RB, Zainuddin IM, Gruissem W (2012) Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa. PLoS ONE 7(9):e45277. doi:10.1371/journal.pone.0045277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut J-M (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Vielle-Calzada PT et al (2009) The Palomero genome suggests metal effects on domestication. Science 326:1078

    Article  CAS  PubMed  Google Scholar 

  • Vivek BS, Krivanek AF, Palacios-Rojas N, Twumasi-Afriyie S, Diallo AO (2008) Breeding quality protein maize (QPM): protocols for developing QPM cultivars. CIMMYT, Mexico D.F

    Google Scholar 

  • Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity 112:30–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang K et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang W et al (2014) Cassava genome from a wild ancestor to cultivated varieties. Nat Comm 5:5110. doi:10.1038/ncomms6110

    Article  CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–181

    Article  Google Scholar 

  • Windhausen VS et al (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3: genes genomes genet 2:1427–1436

    Article  Google Scholar 

  • Wisser RJ, Murray SC, Kolkman JM, Ceballos H, Nelson RJ (2008) Selection mapping of loci for quantitative disease resistance in a diverse maize population. Genetics 180:583–599

    Article  PubMed Central  PubMed  Google Scholar 

  • Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci U S A 108:7339–7344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Worku M, Bänziger M, Erley GSa, Friesen D, Diallo AO, Horst WJ (2007) Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci 47:519–528

    Article  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Genomics of tropical maize, a staple food and feed across the world. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer Science + Business Media, LLC, New York

    Google Scholar 

  • Xu Y, Skinner DJ, Wu H, Palacios-Rojas N, Araus JL, Yan J, Gao S, Warburton ML, Crouch JH (2009) Advances in maize genomics and their value for enhancing genetic gains from breeding. Intl J Plant Genomics 2009 957602 doi:10.1155/2009/957602

    Google Scholar 

  • Yan J et al (2010) Rare genetic variation at Zea mays crtRB1 increases b-carotene in maize grain. Nat Genet 42:322–327

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yan Z, Zhou X, Wang X, Li X, Zhang Y, Liu H, Wu L, Zhang G, Yan G, Ma Z (2015) Mapping QTL for cotton fiber quality traits using simple sequence repeat markers, conserved intron-scanningprimers, and transcript-derived fragments. Euphytica 201:215–230

    Article  Google Scholar 

  • Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526

    Article  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical powerof nested association mapping in maize. Genetics 178:539–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Yuan D (2015) Draft genome of the high-fibre-quality allotetraploid cotton Gossypium barbadense. In Abstract plant and animal genome XXII, San Diego, California, 10–14 January 2015. https://pag.confex.com/pag/xxiii/webprogram/Paper15470.html

  • Zhang H et al (2012) Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc Natl Acad Sci U S A 109:10275–10280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodomiro Ortiz Ríos .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortiz Ríos, R. (2015). Breeding Open-Pollinated, Hybrid and Transgenic Outcrossing Species. In: Plant Breeding in the Omics Era. Springer, Cham. https://doi.org/10.1007/978-3-319-20532-8_10

Download citation

Publish with us

Policies and ethics