Skip to main content

A Mixed-Effects Model with Time Reparametrization for Longitudinal Univariate Manifold-Valued Data

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Abstract

Mixed-effects models provide a rich theoretical framework for the analysis of longitudinal data. However, when used to analyze or predict the progression of a neurodegenerative disease such as Alzheimer’s disease, these models usually do not take into account the fact that subjects may be at different stages of disease progression and the interpretation of the model may depend on some implicit reference time. In this paper, we propose a generative statistical model for longitudinal data, described in a univariate Riemannian manifold setting, which estimates an average disease progression model, subject-specific time shifts and acceleration factors. The time shifts account for variability in age at disease-onset time. The acceleration factors account for variability in speed of disease progression. For a given individual, the estimated time shift and acceleration factor define an affine reparametrization of the average disease progression model. This statistical model has been used to analyze neuropsychological assessments scores and cortical thickness measurements from the Alzheimer’s Disease Neuroimaging Initiative database. The numerical results showed that we can distinguish between slow versus fast progressing and early versus late-onset individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jack Jr., C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W.: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9(1), 119–128 (2010)

    Article  Google Scholar 

  2. Samtani, M.N., Raghavan, N., Shi, Y., Novak, G., Farnum, M., Lobanov, V.: Disease progression model in subjects with mild cognitive impairment from the Alzheimer’s disease neuroimaging initiative: CSF biomarkers predict population subtypes. Brit. J. Clin. Pharmacol. 75(1), 146–161 (2013)

    Article  Google Scholar 

  3. Delor, I., Charoin, J.E., Gieschke, R., Retout, S., Jacqmin, P.: Modeling Alzheimers disease progression using disease onset time and disease trajectory concepts applied to cdr-sob scores from ADNI. CPT Pharmacometrics Syst. Pharmacol. 2(10), e78 (2013)

    Article  Google Scholar 

  4. Yang, E., Farnum, M., Lobanov, V., Schultz, T., Raghavan, N., Samtani, M.N.: Quantifying the pathophysiological timeline of Alzheimer’s disease. J. Alzheimer’s Dis. 26(4), 745–753 (2011)

    Google Scholar 

  5. Laird, N.M., Ware, J.H.: Random-effects models for longitudinal data. Biometrics 38, 963–974 (1982)

    Article  MATH  Google Scholar 

  6. DoCarmo, M.P.: Riemannian Geometry. Springer, Hiedelberg (1992)

    Google Scholar 

  7. Datar, M., Muralidharan, P., Kumar, A., Gouttard, S., Piven, J., Gerig, G., Whitaker, R., Fletcher, P.T.: Mixed-effects shape models for estimating longitudinal changes in anatomy. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M. (eds.) STIA 2012. LNCS, vol. 7570, pp. 76–87. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 560–571. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Lorenzi, M., Pennec, X., Frisoni, G.B., Ayache, N.: Alzheimer’s disease neuroimaging initiative: disentangling normal aging from alzheimer’s disease in structural magnetic resonance images. Neurobiol Aging 31(8), 1443–1451 (2015)

    Article  Google Scholar 

  10. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. IJCV 103(1), 22–59 (2013)

    Article  MATH  Google Scholar 

  11. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, pp. 297–304. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Pinheiro, J.C.: Mixed-effects models in S and S-PLUS. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  13. Lindstrom, M.J., Bates, D.M.: Nonlinear mixed effects models for repeated measures data. Biometrics 46, 673–687 (1990)

    Article  MathSciNet  Google Scholar 

  14. Fonteijn, H.M., Modat, M., Clarkson, M.J., Barnes, J., Lehmann, M., Hobbs, N.Z., Alexander, D.C.: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease. NeuroImage 60(3), 1880–1889 (2012)

    Article  Google Scholar 

  15. The Alzheimer’s Disease Neuroimaging Initiative. https://ida.loni.usc.edu/

  16. Braak, H., Braak, E.: Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3), 271–278 (1995)

    Article  Google Scholar 

  17. Delacourte, A., David, J.P., Sergeant, N., Buee, L., Wattez, A., Vermersch, P., Di Menza, C.: The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52(6), 1158–1165 (1999)

    Article  Google Scholar 

  18. Benzinger, T.L., Blazey, T., Jack, C.R., Koeppe, R.A., Su, Y., Xiong, C., Morris, J.C.: Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 110(47), 18982–18987 (2013)

    Article  Google Scholar 

  19. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the FMJH (Governement Program: ANR-10-CAMP-0151-02). The research leading to these results has received funding from the program Investissements davenir ANR-10-IAIHU-06.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J.-B. Schiratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schiratti, JB., Allassonnière, S., Routier, A., the Alzheimers Disease Neuroimaging Initiative., Colliot, O., Durrleman, S. (2015). A Mixed-Effects Model with Time Reparametrization for Longitudinal Univariate Manifold-Valued Data. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics