Skip to main content

Joint Morphometry of Fiber Tracts and Gray Matter Structures Using Double Diffeomorphisms

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Abstract

This work proposes an atlas construction method to jointly analyse the relative position and shape of fiber tracts and gray matter structures. It is based on a double diffeomorphism which is a composition of two diffeomorphisms. The first diffeomorphism acts only on the white matter keeping fixed the gray matter of the atlas. The resulting white matter, together with the gray matter, are then deformed by the second diffeomorphism. The two diffeomorphisms are related and jointly optimised. In this way, the first diffeomorphisms explain the variability in structural connectivity within the population, namely both changes in the connected areas of the gray matter and in the geometry of the pathway of the tracts. The second diffeomorphisms put into correspondence the homologous anatomical structures across subjects. Fiber bundles are approximated with weighted prototypes using the metric of weighted currents. The atlas, the covariance matrix of deformation parameters and the noise variance of each structure are automatically estimated using a Bayesian approach. This method is applied to patients with Tourette syndrome and controls showing a variability in the structural connectivity of the left cortico-putamen circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allassonnière, S., Amit, Y., Trouvé, A.: Toward a coherent statistical framework for dense deformable template estimation. J. Roy. Statist. Soc. B 69(1), 3–29 (2007)

    Article  Google Scholar 

  2. Gori, P., Colliot, O., Worbe, Y., Marrakchi-Kacem, L., Lecomte, S., Poupon, C., Hartmann, A., Ayache, N., Durrleman, S.: Bayesian atlas estimation for the variability analysis of shape complexes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 267–274. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Worbe, Y., Marrakchi-Kacem, L., Lecomte, S., Valabregue, R., Poupon, F., Guevara, P., Tucholka, A., Mangin, J.F., Vidailhet, M., Lehericy, S., Hartmann, A., Poupon, C.: Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain 138, 472–482 (2014). doi:10.1093/brain/awu311

    Article  Google Scholar 

  4. Gori, P., Colliot, O., Marrakchi-Kacem, L., Worbe, Y., De Vico Fallani, F., Chavez, M., Lecomte, S., Poupon, C., Hartmann, A., Ayache, N., Durrleman, S.: A prototype representation to approximate white matter bundles with weighted currents. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 289–296. Springer, Heidelberg (2014)

    Google Scholar 

  5. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014). doi:10.1016/j.neuroimage.2014.06.043

    Article  Google Scholar 

  6. Chen, T., Rangarajan, A., Eisenschenk, S.J., Vemuri, B.C.: Construction of a neuroanatomical shape complex atlas from 3D MRI brain structures. NeuroImage 60(3), 1778–1787 (2012)

    Article  Google Scholar 

  7. Gorczowski, K., Styner, M., Jeong, J.Y., Marron, J.S., Piven, J., Hazlett, H.C., Pizer, S.M., Gerig, G.: Multi-object analysis of volume, pose, and shape using statistical discrimination. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 652–661 (2010)

    Article  Google Scholar 

  8. Qiu, A., Miller, M.I.: Multi-structure network shape analysis via normal surface momentum maps. NeuroImage 42(4), 1430–1438 (2008)

    Article  Google Scholar 

  9. Ma, J., Miller, M.I., Younes, L.: A bayesian generative model for surface template estimation. Int. J. Biomed Imaging. 16, 1–14 (2010). doi:10.1155/2010/974957

    Article  Google Scholar 

  10. Davies, R.H., Twining, C.J., Cootes, T.F., Taylor, C.J.: Building 3-D statistical shape models by direct optimization. IEEE. Trans. Med. Imag. 29(4), 961–981 (2010)

    Article  Google Scholar 

  11. Hufnagel, H., Pennec, X., Ehrhardt, J., Ayache, N., Handels, H.: Computation of a probabilistic statistical shape model in a Maximum-a-posteriori framework. Methods. Inf. Med. 48(4), 314–319 (2009)

    Article  Google Scholar 

  12. Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global medical shape analysis using the laplace-beltrami spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Joshi, S.H., Cabeen, R.P., Joshi, A.A., Sun, B., Dinov, I., Narr, K.L., Toga, A.W., Woods, R.P.: Diffeomorphic sulcal shape analysis on the cortex. IEEE Trans. Med. Imaging 31(6), 1195–1212 (2012)

    Article  Google Scholar 

  14. Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., Ayache, N.: Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. Neuroimage 55(3), 1073–1090 (2011)

    Article  Google Scholar 

  15. O’Donnell, L.J., Westin, C.F., Golby, A.J.: Tract-based morphometry for white matter group analysis. Neuroimage 45(3), 832–844 (2009)

    Article  Google Scholar 

  16. Wassermann, D., Rathi, Y., Bouix, S., Kubicki, M., Kikinis, R., Shenton, M., Westin, C.-F.: White matter bundle registration and population analysis based on gaussian processes. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 320–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 37–48. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Marsland, S., McLachlan, R.: A hamiltonian particle method for diffeomorphic image registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 396–407. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the program “Investissements d’avenir” ANR-10-IAIHU-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Gori .

Editor information

Editors and Affiliations

Appendix

Appendix

We compute here the gradient of the criterion for atlas construction. A variation in the white system \(\delta \varvec{L}^{W}_{i0}\) produces a variation in the path of control points and momenta \(\delta \varvec{L}^{W}_i(t)\) and consequently \(\delta \varvec{T}^{W}_i(t)\). In parallel, \(\delta \varvec{L}^{All}_{i0}\) produces a variation in \(\delta \varvec{L}^{All}_i(t)\) which , together with \(\delta \varvec{T}^{W}_{i1}\), induces a variation in the global template \(\delta \varvec{T}^{All}_i(t)\) and then in the criterion \(\delta E\):

$$\begin{aligned} \delta E = \sum _{i=1}^{N} \nabla _{\varvec{T}^{All}_{i1}}(D_i[\varvec{T}^{All}_{i1}])^T \delta \varvec{T}^{All}_{i1} + \nabla _{\varvec{L}^{All}_{i0}}(R[\varvec{L}^{All}_{i0}])^T \delta \varvec{L}^{All}_{i0} + \nabla _{\varvec{L}^{W}_{i0}}(R[\varvec{L}^{W}_{i0}])^T \delta \varvec{L}^{W}_{i0} \\ \begin{aligned} \delta \dot{\varvec{L}}^{All}_i(t)&= (d_{\varvec{L}^{All}_{it}}F^{All}_i(t))^T \delta \varvec{L}^{All}_{it}&\delta \varvec{L}^{All}_i(0)&= \delta \varvec{L}^{All}_{i0}\\ \delta \dot{\varvec{L}}^{W}_i(t)&= (d_{\varvec{L}^{W}_{it}}F^{W}_i(t))^T \delta \varvec{L}^{W}_{it}&\delta \varvec{L}^{W}_i(0)&= \delta \varvec{L}^{W}_{i0}\\ \delta \dot{\varvec{T}}^{W}_i(t)&= (\partial _{\varvec{T}^{W}_{it}} G^{W}_i(t))^T \delta \varvec{T}^{W}_{it} + (\partial _{\varvec{L}^{W}_{it}}G^{W}_{i}(t) )^T \delta \varvec{L}^{W}_{it}&\delta \varvec{T}^{W}(0)&= \delta \varvec{T}^W_0\\ \delta \dot{\varvec{T}}^{All}_i(t)&= (\partial _{\varvec{T}^{All}_{it}} G^{All}_{i}(t))^T \delta \varvec{T}^{All}_{it} + (\partial _{\varvec{L}^{All}_{it}}G^{All}_{i}(t)] )^T \delta \varvec{L}^{All}_{it}&\delta \varvec{T}^{All}_i(0)&= \delta \varvec{T}^W_{i1} \cup \delta \varvec{T}^G_0 \end{aligned} \end{aligned}$$

As in [5] we denote: \(R_{st}=\exp (\int _s^t d_{\varvec{L}_{u}}F(u) du)\) and \(V_{st}=\exp (\int _s^t \partial _{\varvec{T}_{u}} G(u) du )\) which are valid for both frameworks W and All and where we have omitted the index i for clarity purpose. The two first ODEs are linear whereas the last two are linear with source term: \(\delta \varvec{L}(t) = R_{0t}\delta \varvec{L}_0\), \(\delta \varvec{T}(t)=\int _0^t V_{ut} \partial _{\varvec{L}_u}G(u) \delta \varvec{L}(u) du + V_{0t} \delta \varvec{T}_0\). Calling \(\varvec{Y}^W\) and \(\varvec{Y}^G\) the white and gray matter objects of \(\varvec{T}^{All}\):

$$\begin{aligned} \delta \varvec{Y}^W(t)=\left( \int _0^t V_{ut}^{All} \partial _{\varvec{L}^{All}}G^{All}(u)R_{0u}^{All}du \right) \delta \varvec{L}^{All}_0 + V_{0t}^{All}\delta \varvec{T}^W_0 +\\ V_{0t}^{All}\int _0^1 \partial _{\varvec{T}^W}G^W(s) \delta \varvec{T}^W(s) ds + V_{0t}^{All}\int _0^1 \partial _{\varvec{L}^W} G^W(s) \delta \varvec{L}^W(s) ds \end{aligned}$$

Using the Fubini’s theorem, the \(3^{rd}\) term is equal to: \(\left( V_{0t}^{All} \int _0^1 V_{u1}^W \partial _{\varvec{L}^W} G^W(u)\right. \) \(\left. R_{0u}^W du \right) \) \(\delta \varvec{L}^W_0\)\(\left( V_{0t}^{All} \int _0^1 \partial _{\varvec{L}^W}G^W(u) R_{0u}^W du \right) \delta \varvec{L}^W_0\) + \((V_{0t}^{All}V_{01}^W) \delta \varvec{T}^W_0\)\(V_{0t}^{All} \delta \varvec{T}^W_0\). The \(4^{th}\) term becomes: \(\left( V_{0t}^{All} \int _0^1 \partial _{\varvec{L}^W}G^W(s) R_{0s}^W ds \right) \delta \varvec{L}^W_0\). Plugging them into \(\delta E\):

$$\begin{aligned} \begin{aligned}&\nabla _{\varvec{L}^{All}_0}E=\left( \int _0^1 (R_{0u}^{All})^T (\partial _{\varvec{L}^{All}} G^{All}(u))^T (V_{u1}^{All})^T du \right) \nabla _{\varvec{T}^{All}_1}D + \nabla _{\varvec{L}_0^{All}} R^{All} \\&\nabla _{\varvec{L}^{W}_0}E=\left( \int _0^1 (R_{0u}^{W})^T (\partial _{\varvec{L}^{W}} G^{W}(u))^T (V_{u1}^{W})^T du \right) (V_{01}^{All})^T \nabla _{\varvec{Y}^{W}_1}D + \nabla _{\varvec{L}_0^{W}} R^{W} \\&\nabla _{\varvec{T}^W_0}E=(V_{01}^W)^T (V_{01}^{All})^T \nabla _{\varvec{Y}^{W}_1}D \\&\nabla _{\varvec{T}^G_0}E=(V_{01}^{All})^T \nabla _{\varvec{Y}^{G}_1}D \end{aligned} \end{aligned}$$

Calling \(\theta ^{All,G}(t)= (V_{t1}^{All})^T \nabla _{\varvec{Y}^{G}_1}D\), \( \theta ^{All,W}_t= (V_{t1}^{All})^T \nabla _{\varvec{Y}^{W}_1}D \), \(\theta ^{All}(t)=\) \( \{\theta ^{All,G}(t)\), \(\theta ^{All,W}(t) \}\), \(\theta ^{W}(t)=(V_{t1}^{W})^T \theta ^{All,W}_0\), \(\xi ^{All}(t)=\int _t^1 (R_{tu}^{All})^T(\partial _{\varvec{L}^{All}} G^{All}(u))^T \theta ^{All}(u) du\) and \(\xi ^{W}(t)\) = \(\int _t^1 (R_{tu}^{W})^T\) \((\partial _{\varvec{L}^{W}} G^{W}(u))^T \theta ^{W}(u) du\) we obtain the results in Eq. 6.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gori, P. et al. (2015). Joint Morphometry of Fiber Tracts and Gray Matter Structures Using Double Diffeomorphisms. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics