Skip to main content

Functional Mapping: How to Map Genes for Phenotypic Plasticity of Development

  • Chapter
  • First Online:
Evolutionary Biology: Biodiversification from Genotype to Phenotype

Abstract

Functional mapping is a statistical tool derived to map genes or quantitative trait loci (QTLs) that control the dynamic process of complex traits. In this chapter, we describe an innovative modification of functional mapping to characterize the genetic basis of phenotypic plasticity for the developmental pattern of phenotypic traits. Phenotypic plasticity is a phenomenon by which multiple phenotypes are produced by a single genotype in response to changing environment. Although phenotypic plasticity has been extensively studied in the past decades, new insights into its formation mechanisms can be gained by integrating developmental principles because environmentally induced phenotypes require time to form and build. The new framework for functional mapping enables geneticists to illustrate the genetic architecture of how QTLs cope with environment to regulate the developmental pattern and timing of phenotypic formation. Because of their role in guiding the evolution of complex phenotypes through environmental adaptation, the discoveries of these QTLs facilitate the synthesis of evo-devo and eco-devo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cheverud JM, Routman EJ, Duarte FAM, Swinderen BV, Cothran K, Perel C (1996) Quantitative trait loci for murine growth. Genetics 142:1305–1319

    PubMed Central  CAS  PubMed  Google Scholar 

  • El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MG (2014) Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19:390–398

    Article  CAS  PubMed  Google Scholar 

  • Fabbrini F, Gaudet M, Bastien C, Zaina G, Harfouche A, Beritognolo I, Marron N, Morgante M, Scarascia-Mugnozza G, Sabatti M (2012) Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar. BMC Plant Biol 12:47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding program. Aust J Agr Res 14:742–754

    Article  Google Scholar 

  • Fu GF, Wang Z, Li JH, Wu RL (2011) A mathematical framework for functional mapping of complex systems using delay differential equations. J Theor Biol 289:206–216

    Article  PubMed  Google Scholar 

  • Fu GF, Bo WB, Pang XM, Wang Z, Chen L, Song YP, Zhang ZY, Li J, Wu RL (2013) Mapping shape QTLs using a radius-entroid-contour model. Heredity 110:511–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He QL, Berg A, Li Y, Vallejos CE, Wu RL (2010) Modeling genes for plant structure, development and evolution: functional mapping meets plant ontology. Trends Genet 26:39–46

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Parco A, Mew T, Magpantay G, McCough S et al (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed 3:105–113

    Article  CAS  Google Scholar 

  • Jiang LB, Clavijo JA, Sun LD, Zhu XL, Bhakta MS, Gezan SA, Carvalho M, Vallejos CE, Wu R (2015) Plastic expression of heterochrony quantitative trait loci (hQTL) for leaf growth in the common bean (Phaseolus vulgaris L.). New Phytol. DOI:10.111/mph.13386

  • Kingsolver JG, Gomulkiewicz R (2003) Environmental variation and selection on performance curves. Integr Comp Biol 43:470–477

    Article  PubMed  Google Scholar 

  • Lacaze X, Hayes PM, Korol A (2009) Genetics of phenotypic plasticity: QTL analysis in barley, Hordeum vulgare. Heredity 102:163–173

    Article  CAS  PubMed  Google Scholar 

  • Li ZK, Yu SB, Lafitte HR et al (2003) QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153

    Article  CAS  PubMed  Google Scholar 

  • Li N, Das K, Wu RL (2009) Functional mapping of human growth trajectories. J Theor Biol 261:33–42

    Article  PubMed  Google Scholar 

  • Li N, McMurry T, Berg A, Wang Z, Berceli SA, Wu RL (2010a) Functional clustering of periodic transcriptional profiles through ARMA (p, q). PLoS ONE 5(4):e9894

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Q, Huang ZW, Xu M, Wang CG, Gai JY, Huang YJ, Pang XM, Wu RL (2010b) Functional mapping of genotype-environment interactions for soybean growth by a semiparametric approach. Plant Methods 6:13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma CX, Casella G, Wu R (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751–1762

    PubMed Central  PubMed  Google Scholar 

  • Ma C-X, Yu QB, Berg A, Fu GF, Yap JS, Tan AX, Kirst M, Cui YH, Wu RL (2008) A statistical model for testing the pleiotropic control of phenotypic plasticity of a count trait. Genetics 179:627–636

    Article  PubMed Central  PubMed  Google Scholar 

  • Moczek AP, Sultan S, Foster S, Ledon-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc B 278:2705–2713

    Article  PubMed Central  PubMed  Google Scholar 

  • Morrison AC, Voorman A, Johnson AD, Liu X, Yu J, Li A, Muzny D, Yu F, Rice K, Zhu C, Bis J, Heiss G, O’Donnell CJ, Psaty BM, Cupples LA, Gibbs R, Boerwinkle E (2013) Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet 45:899–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949

    Article  PubMed  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impact on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  PubMed  Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Schlichting CD (1989) Phenotypic integration and environmental change. Bioscience 39:460–464

    Article  Google Scholar 

  • Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189–201

    Article  Google Scholar 

  • Sillanpää MJ, Pikkuhookana P, Abrahamsson S, Knürr T, Fries A, Lerceteau E, Waldmann P, García-Gil MR (2012) Simultaneous estimation of multiple quantitative trait loci and growth curve parameters through hierarchical Bayesian modeling. Heredity 108:134–146

    Article  PubMed Central  PubMed  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  CAS  PubMed  Google Scholar 

  • Sultan SE (2003) Phenotypic plasticity in plants: a case study in ecological development. Evol Dev 5:25–33

    Article  PubMed  Google Scholar 

  • Sultan SE (2010) Plant developmental responses to the environment: eco-devo insights. Curr Opin Plant Biol 13:96–101

    Article  CAS  PubMed  Google Scholar 

  • Sun LD, Ye Hao H, Wang NT, Wang YQ, Cheng TR, Zhang QX, Wu RL (2014) A model framework for identifying genes that guide the evolution of heterochrony. Mol Biol Evol 31:2238–2247

    Article  CAS  PubMed  Google Scholar 

  • Tetard-Jones C, Kertesz MA, Preziosi RF (2011) Quantitative trait loci mapping of phenotypic plasticity and genotype–environment interactions in plant and insect performance. Phil Trans R Soc B 366:1368–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaughn TT, Pletscher LS, Peripato A, King-Ellison K, Adams E, Erikson C, Cheverud JM (1999) Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet Res 74:313–322

    Article  CAS  PubMed  Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interactions and the evolution of phenotypic plasticity. Evolution 39:505–522

    Article  Google Scholar 

  • Wang YQ, Wang NT, Wang JX, Wang Z, Wu RL (2013a) Delivering systems pharmacogenomics towards precision medicine through mathematics. Adv Drug Deliv Rev 65:905–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Pang XM, Lv YF, Xu F, Zhou T, Li X, Feng SS, Li JH, Li ZK, Wu RL (2013b) A dynamic framework for quantifying the genetic architecture of phenotypic plasticity. Brief Bioinform 14:82–95

    Article  PubMed  Google Scholar 

  • Wang Z, Pang XM, Wu WM, Wang JX, Wang ZH, Wu RL (2013c) Modeling phenotypic plasticity in growth trajectories: a statistical framework. Evolution 68:81–91

    Article  PubMed  Google Scholar 

  • Wang ZH, Wang Z, Fu GF, Luo JT, Wu RL (2013d) Stochastic modeling of systems mapping for drug response. Adv Drug Deliv Rev 65:912–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wennersten L, Forsman A (2012) Population-level consequences of polymorphism, plasticity and randomized phenotype switching: a review of predictions. Biol Rev 87:756–767

    Article  PubMed  Google Scholar 

  • Wu RL (1998) The detection of plasticity genes in heterogeneous environments. Evolution 52:967–977

    Article  Google Scholar 

  • Wu R, Lin M (2006) Functional mapping—how to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet 7:229–237

    Article  CAS  PubMed  Google Scholar 

  • Wu RL, O’Malley DM (1998) Nonlinear genotypic response to macro- and microenvironments. Theor Appl Genet 96:669–675

    Article  Google Scholar 

  • Wu RL, Grisson JE, McKe SE, O’Malley DM (2004) Phenotypic plasticity of fine roots and increased plant growth in pines. BMC Ecol 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu RL, Ma C-X, Casella G (2007) Statistical genetics of quantitative traits: linkage, maps, and QTL. Springer, New York

    Google Scholar 

  • Xiong H, Goulding EH, Carlson EJ, Tecott LH, McCulloch CE, Sen S (2011) A flexible estimating equations approach for mapping function-valued traits. Genetics 189:305–316

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang R, Li J, Wang X, Zhou X (2011) Bayesian functional mapping of dynamic quantitative traits. Theor Appl Genet 123:483–492

    Article  PubMed  Google Scholar 

  • Yap J, Fan J, Wu RL (2009) Nonparametric modeling of covariance structure in functional mapping of quantitative trait loci. Biometrics 65:1068–1077

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhai Y, Lv YF, Li X, Wu WM, Bo WH, Sheng DF, Xu F, Pang XM, Zheng BZ, Wu RL (2014) A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs. New Phytol 20:357–365

    Article  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Ma CX, Cheverud JM, Wu RL (2004a) A unifying statistical model for QTL mapping of genotype-sex interaction for developmental trajectories. Physiol Genom 19:218–227

    Article  CAS  Google Scholar 

  • Zhao W, Zhu J, Gallo-Meagher M, Wu RL (2004b) A unified statistical model for functional mapping of genotype × environment interactions for ontogenetic development. Genetics 168:1751–1762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou T, Lyu YF, Xu F, Wu WM, Zhang J, Pang XM, Zheng BS, Wu RL (2015) A QTL model to map the common genetic basis for correlative phenotypic plasticity. Brief Bioinform 16:24–31

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by grants NIH/NHLBI-1U10HL098115, U01 HL119178, and UL1 TR000127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongling Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, L. et al. (2015). Functional Mapping: How to Map Genes for Phenotypic Plasticity of Development. In: Pontarotti, P. (eds) Evolutionary Biology: Biodiversification from Genotype to Phenotype. Springer, Cham. https://doi.org/10.1007/978-3-319-19932-0_1

Download citation

Publish with us

Policies and ethics