Abstract
Several filamentous fungi grow on the surface or inside different types of cheese, produce secondary metabolites, and contribute to the organoleptic characteristics of mature cheese. Particularly relevant is the contribution of Penicillium roqueforti to the maturation of blue-veined cheeses (Roquefort, Danablu, Cabrales, etc.). P. roqueforti is inoculated into these cheeses as a secondary starter. This fungus is closely related taxonomically to Penicillium carneum and Penicillium paneum, but these two species are not used as starters because they produce the potent toxin patulin. P. roqueforti Thom has the capability to produce about 20 secondary metabolites of at least seven different families, but it seems that only some of them are produced in microaerobic conditions and accumulate inside the cheese (e.g., andrastins). This article focuses on the biosynthetic pathways, gene clusters, and relevance of the known metabolites of P. roqueforti including roquefortines, PR-toxin and eremofortins, andrastins, mycophenolic acid, clavines (agroclavine and festuclavine), citreoisocoumarin, and orsellinic acid. In addition the biosynthesis of patulin (a P. paneum and P. carneum product) is discussed. Penicillium camemberti grows on the surface of Camembert, Brie, and related white rind cheeses, and the penetration of secondary metabolites inside the cheese is relevant. One of the P. camemberti metabolites, cyclopiazonic acid, is important because of its neurotoxicity and its biosynthesis is reviewed. The removal of toxic metabolites gene clusters by precise gene excision while preserving all other characteristics of the improved starter strains, including enzymes involved in cheese ripening and aroma formation, is now open. A possible strain improvement application to the cheese industry is of great interest.
Similar content being viewed by others
Abbreviations
- ACP:
-
Acyl-carrier protein
- AT:
-
Acyltransferase
- ATCC:
-
American Type Culture Collection
- DMA-PP:
-
Dimethylallyl diphosphate
- DMAT:
-
Dimethylallyltryptophan
- DMOA:
-
3,5-Dimethylorsellinic acid
- FPP:
-
Farnesyl diphosphate
- KS:
-
Ketosynthase
- MFS:
-
Major facilitator superfamily
- MPA:
-
Mycophenolic acid
- 6-MSAS:
-
6-Methyl salicylic acid synthase
- MT:
-
Methyltransferase
- nr-PKS:
-
Non-reductive polyketide synthase
- NOX:
-
N1 hydroxylase
- RAPD:
-
Random amplified polymorphic DNA
- RDH:
-
Roquefortine D dehydrogenase
- RPT:
-
Roquefortine prenyltransferase
- SAR:
-
Starter unit acyltransferase
References
Gillot G, Jany J-L, Coton M, Le Floch G, Debaets S, Ropars J, López-Villavicencio M, Dupont J, Branca A, Giraud T, Coton E (2015) Insights into Penicillium roqueforti morphological and genetic diversity. Plos One 10(6), e0129849
Thom C (1906) Fungi in cheese ripening: Camembert and Roquefort. USDA Bureau of Animal Industrial Bulletin 82:1–39
Engel G, Teuber M (1989) Toxic metabolites from fungal cheese starter cultures (Penicillium camemberti and Penicillium roqueforti). In: van Egmond HP (ed) Mycotoxins in dairy products. Elsevier Applied Science, London
Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837–861
Boysen M, Skouboe P, Frisvad J, Rossen L (1996) Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 142:541–549
Houbraken J, Frisvad JC, Samson RA (2010) Sex in Penicillium series Roqueforti. IMA Fungus 1:171–180
Zeilinger S, Martín JF, García-Estrada C (2015) Fungal secondary metabolites in the OMICS era. In: Zeilinger S, Martín JF, García-Estrada C (eds) Biosynthesis and molecular, vol II. Springer, New York
Martín JF, García-Estrada C, Zeilinger S (eds) (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York
Zeilinger S, Martín JF, García-Estrada C (eds) (2015) Biosynthesis and molecular genetics of fungal secondary metabolites, vol II. Springer, New York
Martín JF, Liras P (2015) Novel antimicrobial and other bioactive metabolites obtained from silent gene clusters. In: Demain AL, Sánchez S (eds) Antibiotics: current innovations and future trends. Horizon Scientific Press and Caister Academic Press, Norfolk
Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomic-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217
Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763
Nielsen KF, Dalsgaard PW, Smedsgaard J, Larsen TO (2005) Andrastins A-D, Penicillium roqueforti metabolites consistently produced in blue-mold ripened cheese. J Agric Food Chem 53:2908–2913
Fernández-Bodega MA, Mauriz E, Gómez Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25
García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512
Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg R, Vreeken RJ, Driesen AJM (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium roqueforti. PlosOne 8, e65328
Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Gen Biol 62:11–24
Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612
Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun 5:2876
Ohmomo S, Sato T, Utagawa T, Abe M (1975) Production of alkaloids and related substances by fungi. Isolation of festuclavine and three new indole alkaloids, roquefortine A, B, and C from cultures of Penicillium roqueforti. Nippon Nogei Kagaku Kaishi 49:615–623
Scott PM, Merrien MA, Polonsky J (1976) Roquefortine and isofumigaclavine A, metabolites from Penicillium roqueforti. Experientia 32:140–142
Hymery N, Vasseur V, Coton M, Mounier J, Jany J-L, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456
Martín JF, Coton M (2016) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Elsevier, New York
Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ (2013) Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem 288:37289–32195
Martín JF, Liras P, García-Estrada C (2014) Roquefortine and Prenylated Indole Alkaloids. In: Martín JF, Garcia-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York
Fontaine K, Passeró E, Vallones L, Hymery N, Coton M, Jany JL, Mounier J, Coton E (2015) Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 47:634–640
Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241
Martín JF, Liras P (2016) Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Appl Microbiol Biotechnol 100:1579–1587
Li SM (2009) Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70:1746–1757
Ohmomo S, Oguma K, Ohashi T, Abe M (1978) Isolation of a new indole alkaloid, roquefortine D from cultures of Penicillium roqueforti. Agric Biol Chem 42:2387–2389
Reshetilova TA, Vinokurova NG, Khmelenina VN, Kozlovsky AG (1995) The role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B, and oxaline in fungi Penicillium glandicola and P. atramentosum. Microbiology 64:27–29
Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293
Moreau S, Gaudemer A, Lablache-Combier A, Biguet J (1976) Metabolites de Penicillium roqueforti: PR-toxine et metabolites associes. Tetrahedron Lett 11:833–834
Chang SC, Lu KL, Yeh SF (1993) Secondary metabolites resulting from degradation of PR-toxin by Penicillium roqueforti. Appl Environ Microbiol 59:981–986
Overy DP, Nielsen KF, Smedsgaard J (2005) Roquefortine/oxaline biosynthesis pathways metabolites in Penicillium ser Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol 31:2373–2390
Omura S, Inokoshi J, Uchida R, Shiomi K, Masuma R, Kawakubo R, Tanaka H, Iwai Y, Kosemura S, Yamamura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. Producing strain, fermentation, isolation, and biological. Tetrahedron Lett 37:1265–1268
Vilella D, Sánchez M, Platas G, Salazar O, Genilloud O, Royo I, Cascales C, Martín I, Díez T, Silverman KC, Lingham RB, Singh SB, Jayasuriya H, Peláez F (2000) Inhibitors of farnesylation of Ras from a microbial natural products screening program. J Ind Microbiol Biotechnol 25:315–327
Matsuda Y, Abe I (2014) Meroterpenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York
Uchida R, Shiomi K, Inokoshi J, Sunazuka T, Tanaka H, Iwai Y, Takayanagi H, Omura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. II. Structure elucidation and biosynthesis. J Antibiot (Tokyo) 49:418–424
Uchida R, Shiomi K, Inokoshi J, Tanakaf H, Iwai Y, Omura S (1996) Andrastin D, Novel protein farnesyltransferase inhibitor produced by Penicillium sp. FO-3929. J Antibiot (Tokyo) 49:1278–1280
Nicoletti R, Ciavatta L, Buommino E, Tufano MA (2008) Antitumor extrolites produced by Penicillium species. Int J Biomed Pharm Sci 2:1
Matsuda Y, Awakawa T, Abe I (2013) Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron 69:8199e8204
Matsuda Y, Awakawa T, Itoh T, Wakimoto T, Kushiro T, Fujii I, Ebizuka Y, Abe I (2012) Terretonin biosynthesis requires methylation as essential step for cyclization. Chembiochem 13:1738–17341
Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Bartman CD, Doerfler DL, Bird BA, Remaley AT, Peace JN, Campbell IM (1981) Mycophenolic acid production by Penicillium brevicompactum on solid media. Appl Environ Microbiol 41:729–736
Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801–3826
Meier-Kriesche HU, Li S, Gruessner RW, Fung JJ, Bustami RT, Barr ML, Leichtman AB (2006) Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 6:1111–1131
Borroto-Esoda K, Myrick F, Feng J, Jeffrey J, Furman P (2004) In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Ag Chemother 48:4387–4394
Diamond MS, Zachariah M, Harris E (2002) Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virology 304:211–221
Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F (2004) Identification of fungitoxic metabolites produced by some Penicillium isolates antagonistic to Rhizoctonia solani. Mycopathologia 158:465–474
Tressler RJ, Garvin LJ, Slate DL (1994) Anti-tumor activity of mycophenolate mofetil against human and mouse tumors in vivo. Int J Cancer 57:568–573
Epinette WW, Parker CM, Jones EL, Greist MC (1987) Mycophenolic acid for psoriasis. A review of pharmacology, long-term efficacy, and safety. J Am Acad Dermatol 17:962–971
Nulton CP, Naworal JD, Campbell IM, Grotzinger EW (1976) A combined radiogas chromatograph/mass spectrometer detects intermediates in mycophenolic acid biosynthesis. Anal Biochem 75:219–233
Regueira TB, Kildgaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035–3043
Zhang W, Cao S, Qiu L, Qi F, Li Z, Yang Y, Huang S, Bai F, Liu C, Wan X, Li S (2015) Functional characterization of MpaG′, the O-methyltransferase involved in the biosynthesis of mycophenolic acid. Chembiochem 16:565–569
Hansen BG, Salomonsen B, Nielsen MT, Nielsen JB, Hansen NB, Nielsen K, Regueira TB, Nielsen J, Patil KR, Mortensen UH (2011) Versatile enzyme expression and characterization system for Aspergillus nidulans with the Penicillium brevicompactum polyketide synthetase gene from the mycophenolic acid gene cluster as a test case. Appl Environ Microbiol 77:3044–3051
Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Regueira TB, Mortensen UH, Frisvad JC, Patil KR (2011) A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. BMC Microbiol 11:202
Rigbers O, Lin S-M (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868
Tudzynski P, Neubauer L (2014) Ergot Alkaloids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York
Lorenz N, Haarmann T, Paqoutová S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1832
Panaccione DG (2010) Ergot alkaloids. In: Hofrichter M (ed) The mycota. Springer, Berlin
Lorenz N, Olnovská J, Kulc M, Tudzynski P (2010) Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a Xavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol 76:1822–1830
Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211
Wallwey C, Matuschek M, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:127–134
Wallwey C, Matuschek M, Xie X, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508
Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837
Matuschek M, Wallwey C, Xie X, Li SM (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335
Sorensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618
Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2:613–631
Houbraken J, Samson RA, Frisvad JC (2006) Byssochlamys: significance of heat resistance and mycotoxin production. Adv Exp Med Biol 571:211–224
Varga J, Due M, Frisvad J, Samson RA (2007) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106
McKinley ER, Carlton WW (1991) Patulin. In: Salunkhe DK, Sharma RP (eds) Mycotoxins and phytoalexins. CRC Press, Boca Raton
Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498
Wang IK, Reeves C, Gaucher GM (1991) Isolation and sequencing of a genomic DNA clone containing the 3′terminus of the 6-methylsalicylic acid polyketide synthetase gene of Penicillium urticae. Can J Microbiol 37:86–95
Dombrink-Kurtzman MA (2007) The sequence of the isoepoxydon dehydrogenase gene of the patulin biosynthetic pathway in Penicillium species. Antonie Van Leeuwenhoek 91:179–189
Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O (2009) Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology 155:1738–1747
Abbas A, Dobson ADW (2011) Yeasts and molds: Penicillium camemberti. In: Funquay JW (ed) Encyclopedia of dairy sciences. Academic, San Diego
Chang PK, Horn BW, Dorner JW (2009) Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol 46:176–182
Liu X, Walsh CT (2009) Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry 48:8746–8757
Liu X, Walsh CT (2009) Characterization of cyclo-acetoacetyl-L-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: substrate promiscuity and site directed mutagenesis studies. Biochemistry 48:11032–11044
Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y (2008) Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet Biol 45:1608–1615
Holzapfel CW, Wilkins DC (1971) On the biosynthesis of cyclopiazonic acid. Phitochem 10:351–358
Shinohara Y, Tokuoka M, Koyama Y (2011) Functional analysis of the cyclopiazonic acid biosynthesis gene cluster in Aspergillus oryzae RIB 40. Biosci Biotechnol Biochem 75:2249–2252
Kato N, Tokuoka M, Shinohara Y, Kawatani M, Uramoto M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Takahashi S, Koyama Y, Osada H (2011) Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Chembiochem 12:1376–1382
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this entry
Cite this entry
Martín, J.F., Liras, P. (2016). Secondary Metabolites in Cheese Fungi. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19456-1_37-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-19456-1_37-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Online ISBN: 978-3-319-19456-1
eBook Packages: Living Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics