Skip to main content

PROCESS: Projection-Based Classification of Electroencephalograph Signals

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9120))

Abstract

Classification of electroencephalograph (EEG) signals is the common denominator in EEG-based recognition systems that are relevant to many applications ranging from medical diagnosis to EEG-controlled devices such as web browsers or typing tools for paralyzed patients. Here, we propose a new method for the classification of EEG signals. One of its core components projects EEG signals into a vector space. We demonstrate that this projection may allow visual inspection and therefore exploratory analysis of large EEG datasets. Subsequently, we use logistic regression with our novel vector representation in order to classify EEG signals. Our experiments on a large, publicly available real-world dataset containing 11028 EEG signals show that our approach is robust and accurate, i.e., it outperforms state-of-the-art classifiers in various classification tasks, such as classification according to disease or stimulus. Furthermore, we point out that our approach requires only the calculation of a few DTW distances, therefore, our approach is fast compared to other DTW-based classifiers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E 64(6), 061907 (2001)

    Google Scholar 

  2. Askamp, J., van Putten, M.J.: Diagnostic decision-making after a first and recurrent seizure in adults. Seizure 22(7), 507–511 (2013)

    Article  Google Scholar 

  3. Bensch, M., Karim, A.A., Mellinger, J., Hinterberger, T., Tangermann, M., Bogdan, M., Rosenstiel, W., Birbaumer, N.: Nessi: an EEG-controlled web browser for severely paralyzed patients. Computational Intelligence and Neuroscience (2007)

    Google Scholar 

  4. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)

    Article  Google Scholar 

  5. Boostani, R., Sadatnezhad, K., Sabeti, M.: An efficient classifier to diagnose of schizophrenia based on the EEG signals. Expert Systems with Applications 36(3, pt. 2), 6492 – 6499 (2009)

    Google Scholar 

  6. Buza, K.A.: Fusion Methods for Time-Series Classification. Peter Lang Verlag (2011)

    Google Scholar 

  7. le Cessie, S., van Houwelingen, J.: Ridge Estimators in Logistic Regression. Applied Statistics 41(1), 191–201 (1992)

    Article  Google Scholar 

  8. Chen, G.H., Nikolov, S., Shah, D.: A latent source model for nonparametric time series classification. In: Advances in Neural Information Processing Systems 26, pp. 1088–1096 (2013)

    Google Scholar 

  9. Dauwels, J., Vialatte, F., Musha, T., Cichocki, A.: A comparative study of synchrony measures for the early diagnosis of alzheimer’s disease based on eeg. NeuroImage 49(1), 668–693 (2010)

    Article  Google Scholar 

  10. Haufe, S., Treder, M.S., Gugler, M.F., Sagebaum, M., Curio, G., Blankertz, B.: Eeg potentials predict upcoming emergency brakings during simulated driving. Journal of Neural Engineering 8(5), 056001 (2011)

    Google Scholar 

  11. Kecklund, G., Åkerstedt, T.: Sleepiness in long distance truck driving: an ambulatory eeg study of night driving. Ergonomics 36(9), 1007–1017 (1993)

    Article  Google Scholar 

  12. Knake, S., Halgren, E., Shiraishi, H., Hara, K., Hamer, H., Grant, P., Carr, V., Foxe, D., Camposano, S., Busa, E., Witzel, T., Hinen, M., Ahlfors, S., Bromfield, E., Black, P., Bourgeois, B., Cole, A., Cosgrove, G., Dworetzky, B., Madsen, J., Larsson, P., Schomer, D., Thiele, E., Dale, A., Rosen, B., Stufflebeam, S.: The value of multichannel meg and eeg in the presurgical evaluation of 70 epilepsy patients. Epilepsy Research 69(1), 80–86 (2006)

    Article  Google Scholar 

  13. Kramer, U., Nevo, Y., Neufeld, M.Y., Harel, S.: The value of eeg in children with chronic headaches. Brain and Development 16(4), 304 (1994)

    Article  Google Scholar 

  14. Malinowska, U., Chatelle, C., Bruno, M.A., Noirhomme, Q., Laureys, S., Durka, P.J.: Electroencephalographic profiles for differentiation of disorders of consciousness. Biomedical Engineering Online 12(1), 109 (2013)

    Article  Google Scholar 

  15. McCoy, B., Hahn, C.D.: Continuous EEG Monitoring in the Neonatal Intensive Care Unit. Journal of Clinical Neurophysiology 30(2), 106–114 (2013)

    Article  Google Scholar 

  16. Poulos, M., Rangoussi, M., Alexandris, N., Evangelou, A.: Person identification from the eeg using nonlinear signal classification. Methods of Information in Medicine 41(1), 64–75 (2002)

    Google Scholar 

  17. Radovanović, M., Nanopoulos, A., Ivanović, M.: Time-Series Classification in Many Intrinsic Dimensions. In: Proceedings of the 10th SIAM International Conference on Data Mining (SDM), pp. 677–688 (2010)

    Google Scholar 

  18. Sabeti, M., Katebi, S., Boostani, R., Price, G.: A new approach for eeg signal classification of schizophrenic and control participants. Expert Systems with Applications 38(3), 2063–2071 (2011)

    Article  Google Scholar 

  19. Sabeti, M., Katebi, S., Boostani, R.: Entropy and complexity measures for eeg signal classification of schizophrenic and control participants. Artificial Intelligence in Medicine 47(3), 263–274 (2009)

    Article  Google Scholar 

  20. Scheuer, M.L.: Continuous EEG monitoring in the intensive care unit. Epilepsia 43(s3), 114–127 (2002)

    Google Scholar 

  21. Serafini, A., Rubboli, G., Gigli, G.L., Koutroumanidis, M., Gelisse, P.: Neurophysiology of juvenile myoclonic epilepsy. Epilepsy & Behavior 28(suppl. 1(0)), S30 – S39 (2013)

    Google Scholar 

  22. Srinivasan, V., Eswaran, C., Sriraam, N.: Artificial Neural Network Based Epileptic Detection Using Time-Domain and Frequency-Domain Features. Journal of Medical Systems 29(6), 647–660 (2005)

    Article  Google Scholar 

  23. Tatum IV, W.O.: Long-term EEG monitoring: a clinical approach to electrophysiology. Journal of Clinical Neurophysiology 18(5), 442–455 (2001)

    Article  Google Scholar 

  24. Tomašev, N., Buza, K., Marussy, K., Kis, P.B.: Hubness-aware classification, instance selection and feature construction: Survey and extensions to time-series. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition. SCI, vol. 584, pp. 231–262. Springer, Heidelberg (2015)

    Google Scholar 

  25. Tomašev, N., Mladenić, D.: Nearest neighbor voting in high dimensional data: Learning from past occurrences. Computer Science and Information Systems 9, 691–712 (2012)

    Article  Google Scholar 

  26. Tomašev, N., Radovanović, M., Mladenić, D., Ivanovicć, M.: A probabilistic approach to nearest neighbor classification: Naive hubness Bayesian k-nearest neighbor. In: Proceeding of the CIKM Conference (2011)

    Google Scholar 

  27. Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M.: Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification. International Journal of Machine Learning and Cybernetics (2013)

    Google Scholar 

  28. Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related potentials during object recognition tasks. Brain Research Bulletin 38(6), 531–538 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztian Buza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Buza, K., Koller, J., Marussy, K. (2015). PROCESS: Projection-Based Classification of Electroencephalograph Signals. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19369-4_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19368-7

  • Online ISBN: 978-3-319-19369-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics