Skip to main content

Part of the book series: IIW Collection ((IIWC))

Abstract

Assessment of welds not meeting “standard” requirements may sometimes be of interest to investigate. An example is to determine the fatigue life from a found crack-like defect to failure. It is recommended to use local-based methods, such as the effective notch method or the fracture mechanics method with the guidance of well-established recommendations as, e.g., BS 7910 or comparable ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murakami Y. Stress Intensity Factors Handbook Pergamon Press, Oxford U.K. 1987

    Google Scholar 

  2. Newman J.C. and Raju I.S. Stress intensity factor equations for cracks in three-dimensional finite bodies. ASTM STP 791 1983, pp. I-238 - I-265

    Google Scholar 

  3. Newman J.C. and Raju I.S. Stress intensity factors for internal surface cracks in cylindrical pressure vessels. Journal of Pressure Vessel Technology, 102 (1980), pp. 342-346.

    Google Scholar 

  4. Newman J.C. and Raju I.S. An empirical stress intensity factor equation for the surface crack. Engineering Fracture Mechanics, Vol 15. 1981, No 1-2, pp. 185-192

    Google Scholar 

  5. Frank K.H. and Fisher J.W. Fatigue strength of fillet welded cruciform joints. J. of the Structural Div., Proc. of the ASCE, Vol 105 (1979) pp. 1727-1740

    Google Scholar 

  6. Folias E.S. Axial crack in pressurized cylindrical shell. Int. J. of Fracture Mechanics, vol 1 (1965) No. 2, pp 104

    Google Scholar 

  7. Hobbacher A. Stress intensity factors of welded joints. Engineering Fracture Mechanics, Vol 46 (1993), no 2, pp. 173-182, and Vol 49 (1994), no 2, p. 323

    Google Scholar 

  8. Maddox S.J. and Andrews R.M. Stress intensity factors for weld toe cracks, in ‘Localized Damage Computer Aided Assessment and Control’. Aliabadi M.H., Brebbia C.A. and Cartwright D.J. (Editors). Computational Mechanics Publications, Southamton, ISBN 1 853 12 070 7, co-published with Springer-Verlag, Heidelberg, ISBN 3 540 527 17 6, 1990

    Google Scholar 

  9. Albrecht P. And Yamada K. Rapid calculation of stress intensity factors. J. Struct. Div. ASCE, 1977, 103(ST2), 377-389

    Google Scholar 

  10. Pang H.L.J. A review of stress intensity factors for semi-elliptical surface crack in a plate and fillet welded joint. The Welding Institute, Abington, Cambridge UK, TWI Report 426/1990, IIW doc. XIII-1433-91

    Google Scholar 

  11. Bowness D. and Lee M.M.K.: Stress intensity factor solutions for semi-elliptical weld-toe cracks in T-butt geometries. Fatigue Fract. Engg. Mater. Struct. Vol. 19, No. 6, pp 787-797, 1996.

    Google Scholar 

  12. Bowness D. and Lee M.M.K.: Prediction of weld toe magnification factors for semi-elliptical cracks in T-but joints. Int. J. Fatigue, 22 (5), 389-396, 2000.

    Google Scholar 

  13. Engesvik K.M.:Analysis of uncertainties in the fatigue capacity of welded joints, Doctoral Thesis, Division of Marine Structures, University of Trondheim, Norwegian Institute of Technology, Trondheim Norway, 1981

    Google Scholar 

  14. Nykänen T., Marquis G. and Björk T.: Simplified assessment of weld quality for fatigue loaded cruciform joints. IIW document XIII-2177-07

    Google Scholar 

  15. Fett T. and Munz D.: Stress intensity factors and weight functions. Computational Mechanics Publications, Southampton UK, Boston USA, 1997

    Google Scholar 

  16. Shen G., Plumtree A. and Glinka G.: Weight function for the surface point of semi elliptical surfece crack in a finite thickness plate. Engng. Fracture Mech. vol 40, No. 1, pp 167-176, 1991.

    Google Scholar 

  17. Moftakhar A.A. and Glinka G.: Calculation of stress intensity factors by efficient integration of weight functions. Engg. Fracture Mech. vol 43, No. 5, pp749-756, 1992.

    Google Scholar 

  18. Hall M.S., Topp D.A. and Dover W.D.: Parametric equations for stress intensity factors in weldments. Project Report TSC/MSH/0244, Technical Software Consultants Ltd., Milton Keynes, U.K. 1990

    Google Scholar 

  19. C.C. Mohanan, Early Fatigue Crack Growth at Welds, Computational Mechanics Publications, Southampton UK 1995.

    Google Scholar 

  20. Fracture Mechanics Proof of strength for engineering components. VDMA-Verlag Frankfurt-M, Germany 2009, ISBN 3-8163-0496-6

    Google Scholar 

  21. Fracture mechanics proof of strength for engineering components (Bruchmechanischer Festigkeitsnachweis für Maschinenbauteile), VDMA Frankfurt Germany, 2006, ISBN 3-8163-0514-8

    Google Scholar 

  22. BS 7910:2005: Guidance on methods for assessing the acceptability of flaws in metallic structures British Standard Institution, London.Murakami Y.: Stress Intensity Factors Handbook. Pergamon Press, Oxford U.K. 1987

    Google Scholar 

  23. Rooke D.P. and Cartwright, D.J.: “Compendium of Stress Intensity Factors.” Her Majesty’s Stationary Office, London, 1976.

    Google Scholar 

  24. Newman J.C. and Raju I.S.: Stress intensity factor equations for cracks in three-dimensional finite bodies. ASTM STP 791 1983, pp. I-238 - I-265

    Google Scholar 

  25. Newman J.C. and Raju I.S.: Stress intensity factors for internal surface cracks in cylindrical pressure vessels. Journal of Pressure Vessel Technology, 102 (1980), pp. 342-346.

    Google Scholar 

  26. Newman J.C. and Raju I.S.: An empirical stress intensity factor equation for the surface crack. Engineering Fracture Mechanics, Vol 15. 1981, No 1-2, pp. 185-192

    Google Scholar 

  27. Frank K.H. and Fisher J.W.: Fatigue strength of fillet welded cruciform joints. J. of the Structural Div., Proc. of the ASCE, Vol 105 (1979) pp. 1727-1740

    Google Scholar 

  28. Albrecht P. and Yamada K.: Rapid calculation of stress intensity factors. J. Struct. Div. ASCE, 1977, 103(ST2), 377-389.

    Google Scholar 

  29. Maddox S.J. and Andrews R.M.: Stress intensity factors for weld toe cracks, in ‘Localized Damage Computer Aided Assessment and Control’

    Google Scholar 

  30. Aliabadi M.H., Brebbia C.A. and Cartwright D.J. (Editors). Computational Mechanics Publications, Southamton, ISBN 1 853 12 070 7, co-published with Springer-Verlag, Heidelberg, ISBN 3 540 527 17 6, 1990

    Google Scholar 

  31. Hobbacher A.: Stress intensity factors of welded joints. Engineering Fracture Mechanics, Vol 46 (1993), no 2, pp. 173-182, and Vol 49 (1994), no 2, p. 323

    Google Scholar 

  32. Maddox S.J.: Fatigue crack propagation in weld metal and HAZ. Metal Constr. 1970, 2(7), 285-289.

    Google Scholar 

  33. Jaccard R.: Fatigue crack propagation in aluminium. IIW Doc. XIII-1377-90

    Google Scholar 

  34. Nykänen T., Marquis G. and Björk T.: Simplified assessment of weld quality for fatigue loaded cruciform joints. IIW Document XIII-2177-07

    Google Scholar 

  35. Pang H.L.J.: A review of stress intensity factors for a semi-elliptical surface crack in a plate and fillet welded joint. IIW Document XIII-1433-91

    Google Scholar 

  36. Shen G, Plumtree A, Glinka G.: Weight function for the surface point of semi-elliptical surface crack in a finite thickness plate. Engineering Fracture Mechanics, vol 40, no. 1, pp 167-176, 1991.

    Google Scholar 

  37. Albrecht P. and Yamada K.: Rapid calculation of stress intensity factors. J. of Strutural Div. of the ASCE, 1977,103(ST2), 377-389

    Google Scholar 

  38. Maddox S.J. and Andrews R.M.: Stress intensity factors for weld toe cracks, in ‘Localized Damage Computer Aided Assessment and Control’

    Google Scholar 

  39. Aliabadi M.H., Brebbia C.A. and Cartwright D.J. (Editors). Computational Mechanics Publications, Southamton, ISBN 1 853 12 070 7, co-published with Springer-Verlag, Heidelberg, ISBN 3 540 527 17 6, 1990

    Google Scholar 

  40. Hobbacher A. Stress Intensity Factors of Welded Joints. Engineering Fracture Mechanics, Vol.46(1993) No 2, pp 173-182, et Vol 49(1994) No 2, p 323

    Google Scholar 

  41. Pang H.L.J.: A review of stress intensity factors for a semi-elliptical surface crack in a plate and fillet welded joint. IIW Document XIII-1433-91

    Google Scholar 

  42. Shen G, Plumtree A, Glinka G.: Weight function for the surface point of semi-elliptical surface crack in a finite thickness plate. Engineering Fracture Mechanics, vol 40, no. 1, pp 167-176, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil Jonsson .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 International Institute of Welding

About this chapter

Cite this chapter

Jonsson, B., Dobmann, G., Hobbacher, A.F., Kassner, M., Marquis, G. (2016). Fitness for Service. In: IIW Guidelines on Weld Quality in Relationship to Fatigue Strength. IIW Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-19198-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19198-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19197-3

  • Online ISBN: 978-3-319-19198-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics