Skip to main content

The Mean of Marshall–Olkin-Dependent Exponential Random Variables

  • Conference paper
  • First Online:
Marshall ̶ Olkin Distributions - Advances in Theory and Applications

Abstract

The probability distribution of \(S_d:=X_1+\cdots +X_d\), where the vector \((X_1,\ldots ,X_d)\) is distributed according to the Marshall–Olkin law, is investigated. Closed-form solutions are derived in the general bivariate case and for \(d\in \{2,3,4\}\) in the exchangeable subfamily. Our computations can, in principle, be extended to higher dimensions, which, however, becomes cumbersome due to the large number of involved parameters. For the Marshall–Olkin distributions with conditionally independent and identically distributed components, however, the limiting distribution of \(S_d/d\) is identified as \(d\) tends to infinity. This result might serve as a convenient approximation in high-dimensional situations. Possible fields of application for the presented results are reliability theory, insurance, and credit-risk modeling.

Lexuri Fernandez is grateful to UPV/EHU for the FPI-UPV/EHU grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The parameters \(\lambda _{I}\ge 0\) represent the intensities of the exogenous shocks. Some of these can be \(0\), in which case \(E_I \equiv \infty \). We require \(\sum _{\emptyset \ne I: k \in I} \lambda _I >0\), so for each \(k=1,\ldots ,d\) there is at least one subset \(I\subseteq \{1,\ldots ,d\}\), containing \(k\), such that \(\lambda _{I}>0\). Therefore, (3.3) is well-defined.

References

  1. Arbenz, P., Embrechts, P., Puccetti, G.: The AEP algorithm or the fast computation of the distribution of the sum of dependent random variables. Bernoulli-Bethesda 17(2), 562–591 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bennett, G.: Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57(297), 33–45 (1962)

    Article  MATH  Google Scholar 

  3. Bertoin, J., Yor, M.: Exponential functionals of Lévy processes. Probab. Surv. 2, 191–212 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carmona, P., Petit, F., Yor, M.: Exponential Functionals of Lévy Processes. Lévy Processes. Birkhäuser, Boston (2001)

    Google Scholar 

  5. Cossette, H., Marceau, É.: The discrete-time risk model with correlated classes of business. Insur. Math. Econ. 26(2), 133–149 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Acosta, A.: Upper bounds for large deviations of dependent random vectors. Probab. Theory Relat. Fields 69(4), 551–565 (1985)

    MATH  Google Scholar 

  7. Denuit, M., Genest, C., Marceau, É.: Stochastic bounds on sums of dependent risks. Insur. Math. Econ. 25(1), 85–104 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Downton, F.: Bivariate exponential distributions in reliability theory. J. R. Stat. Soc. Ser. B (Methodological) 3, 408–417 (1970)

    Google Scholar 

  9. Embrechts, P., Lindskog, F., McNeil, A.: Modelling dependence with copulas an applications to risk management. Handb. Heavy Tail. Distrib. Financ. 8(329–384), 1 (2003)

    Google Scholar 

  10. Fang, K.T., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions. Chapman and Hall, London (1990)

    Book  MATH  Google Scholar 

  11. Finetti, B.D.: La prévision: ses lois logiques, ses sources subjectives. In: Annales de l’institut Henri Poincaré (1937)

    Google Scholar 

  12. Gaver, D.: Observing stochastic processes, and approximate transform inversion. Oper. Res. 14(3), 444–459 (1966)

    Article  MathSciNet  Google Scholar 

  13. Giesecke, K.: A simple exponential model for dependent defaults. J. Fixed Income 13(3), 74–83 (2003)

    Article  Google Scholar 

  14. Gjessing, H., Paulsen, J.: Present value distributions with applications to ruin theory and stochastic equations. Stoch. Process. Appl. 71(1), 123–144 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kou, S., Wang, H.: First passage times of a jump diffusion process. Adv. Appl. Probab. 35(2), 504–531 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuznetsov, A., Pardo, J.: Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes. Acta Appl. Math. 123(1), 1–27 (2010)

    MathSciNet  Google Scholar 

  17. Mai, J., Scherer, M.: Lévy-frailty copulas. J. Multivar. Anal. 100(7), 1567–1585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mai, J., Scherer, M.: Reparameterizing Marshall-Olkin copulas with applications to sampling. J. Stat. Comput. Simul. 81(1), 59–78 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mai, J., Scherer, M.: Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. Series in Quantitative Finance. Imperial College Press, London (2012). http://books.google.de/books?id=EzbRygAACAAJ

  20. Marshall, A., Olkin, I.: A generalized bivariate exponential distribution. J. Appl. Probab. 4(2), 291–302 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  21. Marshall, A., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62(317), 30–44 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  22. Puccetti, G., Rüschendorf, L.: Sharp bounds for sums of dependent risks. J. Appl. Probab. 50(1), 42–53 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rivero, V.: Tail asymptotics for exponential functionals of Lévy processes: the convolution equivalent case. Probabilités et Statistiques, Annales de l’Institut Henri Poincaré (2012)

    Google Scholar 

  24. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  25. Wüthrich, M.: Asymptotic value-at-risk estimates for sums of dependent random variables. Astin Bull. 33(1), 75–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lexuri Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fernández, L., Mai, JF., Scherer, M. (2015). The Mean of Marshall–Olkin-Dependent Exponential Random Variables. In: Cherubini, U., Durante, F., Mulinacci, S. (eds) Marshall ̶ Olkin Distributions - Advances in Theory and Applications. Springer Proceedings in Mathematics & Statistics, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-19039-6_3

Download citation

Publish with us

Policies and ethics