Skip to main content

Other Applications

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

Besides their applications in solid-state lasers, transparent ceramics have been used in many other areas, such as lighting, scintillators, opto-electric devices, optical systems, and armors, which will be discussed in detail in this chapter. New applications of transparent ceramics, e.g., as biomaterials, will also be mentioned at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Groot JJ, van Vliet J (eds) (1986) The high-pressure sodium lamp. Macmillan, London

    Google Scholar 

  2. Brown KE, Chalmers AG, Wharmby DO (1982) Tin sodium-halide lamps in ceramic envelopes. J Illum Eng Soc 11:106–114

    Google Scholar 

  3. Carleton S, Seinen PA, Stoffels J (1997) Metal halide lamps with ceramic envelopes: a breakthrough in color control. J Illum Eng Soc 26:139–145

    Google Scholar 

  4. Jungst S, Lang D, Galvez M (2004) Improved arc tubes for ceramic metal halide lamps. In: Zissis G (ed) Light sources, p 115–124

    Google Scholar 

  5. Krell A, Hutzler T, Klimke J (2007) Transparent ceramics for structural applications: part 2: fields of applications. CFI-Ceram Forum Int 84:E50–E56

    Google Scholar 

  6. Krell A, Hutzler T, Klimke J (2007) Transparent ceramics for structural applications: part 1: physics of light transmission and technological consequences. CFI-Ceram Forum Int 84:E41–E50

    Google Scholar 

  7. Krell A, Strassburger E (2007) Ballistic strength of opaque and transparent armor. Am Ceram Soc Bull 86:9201–9207

    Google Scholar 

  8. Hayashi K, Kobayashi O, Toyoda S, Morinaga K (1991) Transmission optical properties of polycrystallline alumina with submicron grains. Mater Trans JIM 32:1024–1029

    Google Scholar 

  9. Krell A, Blank P, Ma HW, Hutzler T, van Bruggen MPB, Apetz R (2003) Transparent sintered corundum with high hardness and strength. J Am Ceram Soc 86:12–18

    Google Scholar 

  10. Wei GC (2005) Transparent ceramic lamp envelope materials. J Phys D Appl Phys 38:3057–3065

    Google Scholar 

  11. Wei GC (2009) Transparent ceramics for lighting. J Eur Ceram Soc 29:237–244

    Google Scholar 

  12. Wei GC (2004) Transparent ceramic lamp envelope materials. In: Zissis G (ed) Light sources 2004. IOP Publishing Ltd, Bristol, pp 169–170

    Google Scholar 

  13. Wei GC, Lapatovich WP, Browne J, Snellgrove R (2008) Dysprosium oxide ceramic arc tube for HID lamps. J Phys D Appl Phys 41:144014

    Google Scholar 

  14. Guenther K, Hartmann T, Sarroukh H (2004) Hg free ceramic automotive headlight lamps. In: Zissis G (ed) Light sources 2004, pp 219–220

    Google Scholar 

  15. Monahan RD, Halloran JW (1979) Single-crystal boundary migration in hot-pressed aluminum-oxide. J Am Ceram Soc 62:564–567

    Google Scholar 

  16. Scott C, Kaliszewski M, Greskovich C, Levinson L (2002) Conversion of polycrystalline Al2O3 into single-crystal sapphire by abnormal grain growth. J Am Ceram Soc 85:1275–1280

    Google Scholar 

  17. Thompson GS, Henderson PA, Harmer MP, Wei GC, Rhodes WH (2004) Conversion of polycrystalline alumina to single-crystal sapphire by localized codoping with silica. J Am Ceram Soc 87:1879–1882

    Google Scholar 

  18. Lapatovich WP (2004) Recent advances in lighting science. In: Cohen JS, Mazevet S, Kilcrease DP (eds) Atomic processes in plasmas, pp 255–264

    Google Scholar 

  19. Hayashi K, Kobayashi O, Toyoda S, Morinaga K (1991) Trnasmission optical-properties of polycrystalline alumina with submicro grains. Mater Trans JIM 32:1024–1029

    Google Scholar 

  20. Wei GC (2002) Characterization of translucent polycrystalline alumina (PCA) ceramics. In: Matsui M, Jahanmir S, Mostaghaci H, Naito M, Uematsu K, Wasche R et al (eds) Improved ceramics through new measurements, processing, and standards, pp 135–144

    Google Scholar 

  21. Goldman LM, Foti R, Smith M, Kashalikar U, Sastri S (2010) AlON (R) transparent armor. In: Swab JJ (eds) Advances in ceramic armor V, pp 225–232

    Google Scholar 

  22. Goldman LM, Hartnett TM, Wahl JM, Ondercin RJ, Olson K (2001) Recent advances in aluminum oxynitride (ALON (TM)) optical ceramic. In: Tustison RW (ed) Window and dome technologies and materials VII. SPIE-Int Soc Optical Engineering, Bellingham, pp 71–78

    Google Scholar 

  23. Goldman LM, Twedt R, Balasubramanian S, Sastri S (2011) AlON (R) optical ceramic transparencies for window, dome and transparent armor applications. Window Dome Technol Mater XII 8016:801608

    Google Scholar 

  24. Hartnett TM, Bernstein SD, Maguire EA, Tustison RW (1998) Optical properties of ALON (aluminum oxynitride). Infrared Phys Technol 39:203–211

    Google Scholar 

  25. Jiang HW, Du HB, Tian TY, Wu H (2010) Influence of Y2O3 additive on transparent of AlON ceramics. In: Pan W, Gong JH (eds) Chinese ceramics communications, pp 580–581

    Google Scholar 

  26. Qi JQ, Wang YZ, Lu TC, Yu YG, Pan L, Wei N et al (2011) Preparation and light transmission properties of AlON ceramics by the two-step method with nanosized Al2O3 and AlN. Metall Mater Trans A Phys Metall Mater Sci 42A:4075–4079

    Google Scholar 

  27. Qi JQ, Zhou JC, Pang W, He JF, Su YY, Liao ZJ et al (2007) Study on the preparation of ALON powder by solid state reaction method. Rare Metal Mater Eng 36:88–91

    Google Scholar 

  28. Yuan XY, Zhang F, Liu XJ, Zhang Z, Wang SW (2011) Fabrication of transparent AlON ceramics by solid-state reaction sintering. J Inorg Mater 26:499–502

    Google Scholar 

  29. McCauley JW, Corbin ND (1979) Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (AlON). J Am Ceram Soc 62:476–479

    Google Scholar 

  30. Willems HX, Hendrix MMRM, de With G, Metselaar R (1992) Thermodynamics of AlON I: stability at lower temperatures. J Eur Ceram Soc 10:327–337

    Google Scholar 

  31. Willems HX, Hendrix MMRM, de With G, Metselaar R (1992) Thermodynamics of AlON II: phase relations. J Eur Ceram Soc 10:339–346

    Google Scholar 

  32. Willems HX, Dewith G, Metselaar R (1993) Thermodynamics of AlON 3. Stabilization of AlON with MgO. J Eur Ceram Soc 12:43–49

    Google Scholar 

  33. Autrata R (1989) Backscattered electron imaging using single-crystal sintillator detectors. Scan Microsc 3:739–763

    Google Scholar 

  34. Blasse G (1994) Scintillator materials. Chem Mater 6:1465–1475

    Google Scholar 

  35. Greskovich C, Duclos S (1997) Ceramic scintillators. Annu Rev Mater Sci 27:69–88

    Google Scholar 

  36. Heath RL, Hofstadter R, Hughes EB (1979) Inorganic scintillators—review of techniques and applications. Nucl Instrum Methods 162:431–476

    Google Scholar 

  37. Knapitsch A, Lecoq P (2014) Review on photonic crystal coatings for scintillators. Int J Mod Phys A 29

    Google Scholar 

  38. Nadaraia L, Jalabadze N, Chedia R, Khundadze L (2013) Production of nanopowder and bulk aluminate ceramic scintillators. Ceram Int 39:2207–2214

    Google Scholar 

  39. Nikl M, Laguta VV, Vedda A (2008) Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi B Basic Solid State Phys 245:1701–1722

    Google Scholar 

  40. Nikl M, Yoshikawa A, Kamada K, Nejezchleb K, Stanek CR, Mares JA et al (2013) Development of LuAG-based scintillator crystals—a review. Prog Cryst Growth Charact Mater 59:47–72

    Google Scholar 

  41. Rodnyi PA, Dorenbos P, Vaneijk CWE (1995) Energy-loss in inorganic scitillators. Physica Status Solidi B Basic Res 187:15–29

    Google Scholar 

  42. Ryzhkov VD, Stadnik PE, Yakovlev YA (1984) Development prospects of scintillator—photodiode systems (review). Instrum Exp Tech 27:1045–1056

    Google Scholar 

  43. van Eijk CWE (2002) Inorganic scintillators in medical imaging. Phys Med Biol 47:R85–R106

    Google Scholar 

  44. Graichen J, Maier K, Schuth J, Siepe A, von Witsch W (2002) Efficiency and directional effects in the detection of low-energy recoil nuclei in a NaI(Tl) single crystal. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 485:774–779

    Google Scholar 

  45. Picchio M, Savi A, Lecchi M, Landoni C, Gianolli L, Brioschi M et al (2003) Evaluation of the clinical performances of a large NaI(Tl) crystal 3D PET scanner. Q J Nucl Med 47:90–100

    Google Scholar 

  46. Nagarkar VV, Gaysinskiy V, Ovechkina EE, Thacker SC, Miller SR, Brecher C et al (2007) Suppression of afterglow in CsI(Tl) by codoping with Eu2+: fabrication of microcolumnar films for high-resolution high-speed imaging. IEEE Trans Nucl Sci 54:1378–1382

    Google Scholar 

  47. Valais I, Nikolopoulos D, Kalivas N, Gaitanis A, Loudos G, Sianoudis I et al (2007) A systematic study of the performance of the CsI: Tl single-crystal scintillator under X-ray excitation. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 571:343–345

    Google Scholar 

  48. Gironi L, Arnaboldi C, Capelli S, Cremonesi O, Pessina G, Pirro S et al (2009) CdWO4 bolometers for double beta decay search. Opt Mater 31:1388–1392

    Google Scholar 

  49. Nagornaya L, Onyshchenko G, Pirogov E, Starzhinskiy N, Tupitsyna I, Ryzhikov V et al (2005) Production of the high-quality CdWO4 single crystals for application in CT and radiometric monitoring. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 537:163–167

    Google Scholar 

  50. Zaldo C, Moya E (1993) Low-temperaure X-ray-induced optical-properties of Bi4Ge3O12 scintillators. J Phy Condens Matter 5:4935–4944

    Google Scholar 

  51. Greskovich CD, Cusano D, Hoffman D, Riedner RJ (1992) Ceramic scintillators for advanced, medical X-ray-detectors. Am Ceram Soc Bull 71:1120–1130

    Google Scholar 

  52. Martin T, Douissard PA, Seeley ZM, Cherepy N, Payne S, Mathieu E et al (2012) New high stopping power thin scintillators based on Lu2O3 and Lu3Ga5−x In x O12 for high resolution X-ray imaging. IEEE Trans Nucl Sci 59:2269–2274

    Google Scholar 

  53. Placious RC, Polansky D, Berger H, Bueno C, Vosberg CL, Betz RA et al (1991) High-density glass scintillator for real-time X-ray inspection. Mater Eval 49:1419–1421

    Google Scholar 

  54. Bueno C, Barker MD, Betz RA, Barry RC, Buchanan RA (1995) Nondestructive evaluation of aircraft structures using high-resolution real-time radiography

    Google Scholar 

  55. Chen YP, Luo DL (2012) Development of containing Li-6 glass scintillators for neutron detection. J Inorg Mater 27:1121–1128

    Google Scholar 

  56. Sun XY, Zhang M, Yu XG (2011) Luminescence properties of Tb3+-activated silicate glass scintillator. Int J Mater Res 102:104–108

    Google Scholar 

  57. Sangway PC, Stapleton RE (1977) X-ray-emission spectra of LaOBr: Tm and its impact on screen-film system-design. J Electrochem Soc 124:C110

    Google Scholar 

  58. Somaiah K, Narayana MV, Brixner LH (1990) Thermally stimulated luminescence of LaOBr:Tm. Physica Status Solidi A Appl Res 117:K81–K84

    Google Scholar 

  59. Shanker V, Ohmi K, Tanaka S, Kobayashi H (1998) Gd2O2S: Tb phosphor thin films grown by electron beam evaporation and their photoluminescent and electroluminescent characteristics. IEICE Trans Electron E81C:1721–1724

    Google Scholar 

  60. Tao S, Gu ZH, Nathan A (2002) Fabrication of Gd2O2S: Tb based phosphor films coupled with photodetectors for X-ray imaging applications. J Vac Sci Technol A Vac Surf Films 20:1091–1094

    Google Scholar 

  61. Timmer JH, van Vuure TL, Bom V, van Eijk CW, de Haas J, Schippers JM (2002) A scintillating GEM for 2D-dosimetry in radiation therapy. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 478:98–103

    Google Scholar 

  62. Schippers JM, Boon SN, van Luijk P (2002) Applications in radiation therapy of a scintillating screen viewed by a CCD camera. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 477:480–485

    Google Scholar 

  63. Klyachko AV, Moskvin V, Nichiporov DF, Solberg KA (2012) A GEM-based dose imaging detector with optical readout for proton radiotherapy. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 694:271–279

    Google Scholar 

  64. Bertrand GHV, Hamel M, Normand S, Sguerra F (2015) Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: state of the art. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 776:114–128

    Google Scholar 

  65. Bertrand GHV, Hamel M, Sguerra F (2014) Current status on plastic scintillators modifications. Chem-A Eur J 20:15660–15685

    Google Scholar 

  66. Cherepy NJ, Sanner RD, Beck PR, Swanberg EL, Tillotson TM, Payne SA et al (2015) Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 778:126–132

    Google Scholar 

  67. Boyer K, Thompson BD, McPherson A, Rhodes CK (1994) Evidence for coherent electron motions in multiphoton X-ray-production from Kr and Xe clusters. J Phys B Atomic Mol Opt Phys 27:4373–4389

    Google Scholar 

  68. Kubo H, Sasaki A, Moribayashi K, Higashijima S, Takenaga H, Shirnizu K et al (2007) Study of highly ionized Xe spectra with 3s-3p and 3p-3d transitions in JT-60U reversed shear plasmas. J Nucl Mater 363:1441–1445

    Google Scholar 

  69. Takahashi T, Nakagawa M, Yoshida M, Takeuchi H (1992) Highly stable solid-state X-ray-detector array. Med Phys 19:1161–1166

    Google Scholar 

  70. Yoshida M, Nakagawa M, Fujii H, Kawaguchi F, Yamada H, Ito Y et al (1988) Application of Gd2O2S ceramic scintillator for X-ray solid-state detectro in X-ray CT. Jpn J Appl Phys Part 2 Lett 27:L1572–L1575

    Google Scholar 

  71. Duclos SJ, Greskovich CD, Lyons RJ, Vartuli JS, Hoffman DM, Riedner RJ et al (2003) Development of the HiLight (TM) scintillator for computed tomography medical imaging. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 505:68–71

    Google Scholar 

  72. Greskovich C, Chernoch JP (1973) Polycrystalline ceramic lasers. J Appl Phys 44:4599–4606

    Google Scholar 

  73. Kostler W, Winnacker A, Rossner W, Grabmaier BC (1995) Effect of Pr-codoping on the X-ray-induced afterglow of (Y,Gd)2O3:Eu. J Phys Chem Solids 56:907–913

    Google Scholar 

  74. Godmanis I, Hohenau W (1989) On the nature of afterglow of the X-ray-induced luminescence in crystalline and glassy SiO2. Physica Status Solidi A Appl Res 111:335–343

    Google Scholar 

  75. Yanagida T, Fujimoto Y, Ito T, Uchiyama K, Mori K (2014) Development of X-ray-induced afterglow characterization system. Appl Phys Expr 7

    Google Scholar 

  76. Yanagida T, Sato H (2014) Optical and scintillation properties of Nd-doped complex garnet. Opt Mater 38:174–178

    Google Scholar 

  77. Knupfer W, Hell E, Mattern D (1999) Novel X-ray detectors for medical imaging. Nucl Phys B Proc Suppl 78:610–615

    Google Scholar 

  78. Yamada H, Suzuki A, Uchida Y, Yoshida M, Yamamoto H, Tsukuda Y (1989) A scintillator Gd2O2S:Pr, Ce, F for X-ray comuted-tomography. J Electrochem Soc 136:2713–2716

    Google Scholar 

  79. Shimizu J, Yamada H, Murata S, Tomita A, Kitamura M, Suzuki A (1991) Optical-confinement-factor dependencies of the K-factor, differential gain, and nonlinear gain coefficient for 1.55 μm InGaAs/InGaAsP MQW and strained-MQW lasers. IEEE Photonics Technol Lett 3:773–776

    Google Scholar 

  80. Rodnyi PA, Dorenbos P, Vaneijk CWE (1994) Creation of elecron-hole pairs in inorganic scintillators. In: Weber MJ, Lecoq P, Ruchti RC, Woody C, Yen WM, Zhu RY (eds) Scintillator Phosphor Mater pp 379–385

    Google Scholar 

  81. Rodnyi PA, Dorenbos P, Vaneijk CWE (1995) Energy-loss in inorganic scintillators. Physica Status Solidi B Basic Res 187:15–29

    Google Scholar 

  82. Devanathan R, Corrales LR, Gao F, Weber WJ (2006) Signal variance in γ-ray detectors—a review. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 565:637–649

    Google Scholar 

  83. Gruner SM, Tate MW, Eikenberry EF (2002) Charge-coupled device area X-ray detectors. Rev Sci Instrum 73:2815–2842

    Google Scholar 

  84. Morgan GP, Glynn TJ, Imbusch GF, Remeika JP (1978) Luminescence from Al2x Ga2(1−x)O3:Cr3+. J Chem Phys 69:4859–4866

    Google Scholar 

  85. Morgan GP, Treacy JF, Glynn TJ, Imbusch GF, Remeika JP (1979) Luminescence from Al2xGa2(1-x)O3:Cr3+. J Lumin 18–9:175–178

    Google Scholar 

  86. Donnelly CJ, Glynn TJ, Morgan GP, Imbusch GF (1991) Level-crossing in chromium-doped materials. J Lumin 48–9:283–287

    Google Scholar 

  87. Henderson B, Imbusch GF (1988) Optical processes in tunable transition-metal-ion lasers. Contemp Phys 29:235–272

    Google Scholar 

  88. Imbusch GF (1992) Energy transfer in heavily doped ruby. J Lumin 53:465–467

    Google Scholar 

  89. Maccraith BD, Glynn TJ, Imbusch GF, McDonagh C (1980) Optical excitation transfer in MgO:Cr3+. J Phys C Solid State Phys 13:4211–4216

    Google Scholar 

  90. Ilmer M, Schneider J, Ostertag M, Berthold T, Bohaty L, Grabmaier BC (1994) Studies of structural and luminescent properties of Gd3Ga5O12:Cr and corresponding solid solutions. In: Delhez R, Mittemeijer EJ (eds) Epdic 3, Pts 1 and 2: proceedings of the 3rd European powder diffraction conference, pp 801–806

    Google Scholar 

  91. Yamaji A, Kochurikhin VV, Kurosawa S, Suzuki A, Fujimoto Y, Yokota Y et al (2014) Luminescence properties of Gd3Ga5O12: Cr single crystals. IEEE Trans Nucl Sci 61:320–322

    Google Scholar 

  92. Blasse G, Grabmaier BC, Ostertag M (1993) The afterglow mechanism of chromium-doped gadolinium gallium garnet. J Alloy Compd 200:17–18

    Google Scholar 

  93. Forest H, Ban G (1969) Evidence for Eu3+-emission from 2 symmetry sites in Y2O3:Eu3+. J Electrochem Soc 116:474–478

    Google Scholar 

  94. Forest H, Ban G (1971) Random substitution of Eu3+ for Y3+ in Y2O3:Eu3+. J Electrochem Soc 118:1999–2001

    Google Scholar 

  95. Duclos SJ, Greskovich CD, Oclair CR (1994) Electronic trap defects in Y2O3:Eu and (Y,Gd)2O3:Eu X-ray scintillators. In: Weber MJ, Lecoq P, Ruchti RC, Woody C, Yen WM, Zhu RY (eds) Scintillator and phosphor materials, pp 503–509

    Google Scholar 

  96. Hsieh J, Williams E, Shaughnessy C, Tang XY, Grekowicz B, Nilsen R et al (2004) Optimization of system design for 64-slice cone beam computed tomography. In: Bonse U (ed) Developments in X-ray tomography Iv, pp 694–700

    Google Scholar 

  97. Grassmann H, Moser HG, Dietl H, Eigen G, Fonseca V, Lorenz E et al (1985) Improvements in photodiode readout for small CsI(Tl) crystals. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 234:122–124

    Google Scholar 

  98. Kostler W, Bayer E, Rossner W, Grabmaier BC (1993) Correlation of time and temperature-dependence of the luminescence of rare-earth activated (Y,Gd)2O3. Nucl Tracks Radiat Meas 21:135–138

    Google Scholar 

  99. Cherepy NJ, Kuntz JD, Seeley ZM, Fisher SE, Drury OB, Sturm BW et al (2010) Transparent ceramic scintillators for gamma spectroscopy and radiography. In: Burger A, Franks LA, James RB (eds) Hard X-ray, gamma-ray, and neutron detector physics XII

    Google Scholar 

  100. Cherepy NJ, Kuntz JD, Roberts JJ, Hurst TA, Drury OB, Sanner RD et al (2008) Transparent ceramic scintillator fabrication, properties and applications. In: Burger A, Franks LA, James RB (eds) Hard X-ray, gamma-ray, and neutron detector physics X. Spie-Int Soc Optical Engineering, Bellingham

    Google Scholar 

  101. Lempicki A, Brecher C, Szupryczynski P, Lingertat H, Nagarkar VV, Tipnis SV et al (2002) A new lutetia-based ceramic scintillator for X-ray imaging. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 488:579–590

    Google Scholar 

  102. Brecher C, Bartram RH, Lempicki A (2004) Hole traps in Lu2O3: Eu ceramic scintillators. I. Persistent afterglow. J Lumin 106:159–168

    Google Scholar 

  103. Bartram RH, Lempicki A, Kappers LA, Hamilton DS (2004) Hole traps in Lu2O3: Eu ceramic scintillators. II. Radioluminescence and thermoluminescence. J Lumin 106:169–176

    Google Scholar 

  104. Yanagida T, Fujimoto Y, Yagi H, Yanagitani T (2014) Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations. Opt Mater 36:1044–1048

    Google Scholar 

  105. Futami Y, Yanagida T, Fujimoto Y, Pejchal J, Sugiyama M, Kurosawa S et al (2013) Optical and scintillation properties of Sc2O3, Y2O3 and Lu2O3 transparent ceramics synthesized by SPS method. Radiat Meas 55:136–140

    Google Scholar 

  106. Hui Y, Sun X, Chen J, Li X, Huo D, Liu S et al (2014) The fabrication of monoclinic Gd2O3 transparent microspheres and scintillator array via laser heating. IEEE Trans Nucl Sci 61:367–372

    Google Scholar 

  107. Yanagida T, Roh T, Takahashi H, Hirakuri S, Kokubun M, Makishima K et al (2007) Improvement of ceramic YAG(Ce) scintillators to (YGd)3Al5O12(Ce) for gamma-ray detectors. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 579:23–26

    Google Scholar 

  108. Cherepy NJ, Kuntz JD, Tillotson TM, Speaks DT, Payne SA, Chai BHT et al (2007) Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 579:38–41

    Google Scholar 

  109. Liu S, Feng X, Shi Y, Wu L, Luo J, Wang W et al (2014) Fabrication, microstructure and properties of highly transparent Ce3+:Lu3Al5O12 scintillator ceramics. Opt Mater 36:1973–1977

    Google Scholar 

  110. Hupke R, Doubrava C (1999) The new UFC-detector for CT-imaging. Physica Med 15:315–318

    Google Scholar 

  111. Nagarkar VV, Miller SR, Tipnis SV, Lempicki A, Brecher C, Lingertat H (2004) A new large area scintillator screen for X-ray imaging. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 213:250–254

    Google Scholar 

  112. Bartram RH, Hamilton DS, Kappers LA, Lempicki A (1997) Electron traps and transfer efficiency of cerium-doped aluminate scintillators. J Lumin 75:183–192

    Google Scholar 

  113. Bartram RH, Hamilton DS, Kappers LA, Lempicki A, Glodo J, Schweitzer JS et al (1999) Electron traps and transfer efficiency in cerium-doped lutetium oxyorthosilicate scintillators. Radiat Eff Defects Solids 150:11–14

    Google Scholar 

  114. Zych E, Brecher C, Wojtowicz AJ, Lingertat H (1997) Luminescence properties of Ce-activated YAG optical ceramic scintillator materials. J Lumin 75:193–203

    Google Scholar 

  115. Mihokova E, Nikl M, Mares JA, Beitlerova A, Vedda A, Nejezchleb K et al (2007) Luminescence and scintillation properties of YAG: Ce single crystal and optical ceramics. J Lumin 126:77–80

    Google Scholar 

  116. Zorenko Y, Gorbenko V, Konstankevych I, Voloshinovskii A, Stryganyuk G, Mikhallin V et al (2005) Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues. J Lumin 114:85–94

    Google Scholar 

  117. Lu JR, Ueda K, Yagi H, Yanagitani T, Akiyama Y, Kaminskii AA (2002) Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J Alloy Compd 341:220–225

    Google Scholar 

  118. Li HL, Liu XJ, Huang LP (2005) Fabrication of transparent cerium-doped lutetium aluminum garnet (LuAG:Ce) ceramics by a solid-state reaction method. J Am Ceram Soc 88:3226–3228

    Google Scholar 

  119. Li HL, Liu XJ, Huang LP (2006) Fabrication of transparent Ce:LuAG ceramics by a solid-state reaction method. J Inorg Mater 21:1161–1166

    Google Scholar 

  120. Li HL, Liu XJ, Xie RJ, Zeng Y, Huang LP (2006) Fabrication of transparent cerium-doped lutetium aluminum garnet ceramics by co-precipitation routes. J Am Ceram Soc 89:2356–2358

    Google Scholar 

  121. Li HL, Liu XJ, Xie RJ, Zhou GH, Hirosaki N, Pu XP et al (2008) Cerium-doped lutetium aluminum garnet phosphors and optically transparent ceramics prepared from powder precursors by a urea homogeneous precipitation method. Jpn J Appl Phys 47:1657–1661

    Google Scholar 

  122. Nikl M, Mares JA, Solovieva N, Li HL, Liu XJ, Huang LP et al (2007) Scintillation characteristics of Lu3Al5O12: Ce optical ceramics. J Appl Phys 101:033515

    Google Scholar 

  123. Yanagida T, Fujimoto Y, Yokota Y, Yoshikawa A, Kuretake S, Kintaka Y et al (2011) Evaluations of pure and ytterbium doped transparent ceramic complex perovskite scintillators. Opt Mater 34:414–418

    Google Scholar 

  124. Chipaux R, Cribier M, Dujardin C, Garnier N, Guerassimova N, Mallet J et al (2002) Ytterbium-based scintillators, a new class of inorganic scintillators for solar neutrino spectroscopy. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 486:228–233

    Google Scholar 

  125. Guerassimova N, Dujardin C, Garnier N, Pedrini C, Petrosyan AG, Kamenskikh IA et al (2002) Charge-transfer luminescence and spectroscopic properties of Yb3+ in aluminium and gallium garnets. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 486:278–282

    Google Scholar 

  126. Antonini P, Belogurov S, Bressi G, Carugno G, Santilli P (2002) Scintillation properties of Yb-doped yttrium-aluminum garnets. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 488:591–603

    Google Scholar 

  127. Belogurov S, Bressi G, Carugno G, Grishkin Y (2004) Properties of Yb-doped scintillators: YAG, YAP, LuAG. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 516:58–67

    Google Scholar 

  128. Belogurov S, Bressi G, Carugno G, Moszynski M, Czarnacki W, Kapusta M et al (2003) Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K. Nucl Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 496:385–389

    Google Scholar 

  129. Jiang H, Zou YK, Chen Q, Li KK, Zhang R, Wang Y et al (2005) Transparent electro-optic ceramics and devices. In: Ming H, Zhang XP, Chen MY (eds) Optoelectronic devices and integration, Pts 1 and 2. SPIE-Int Soc Optical Engineering, Bellingham, pp 380–394

    Google Scholar 

  130. Song QW, Wang XM, Bussjager R, Osman J (1996) Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer. Appl Opt 35:3155–3162

    Google Scholar 

  131. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Google Scholar 

  132. Zeng X, He XY, Cheng WX, Qiu PS, Xia B (2014) Effect of Dy substitution on ferroelectric, optical and electro-optic properties of transparent Pb0.90La0.10(Zr0.65Ti0.35)O3 ceramics. Ceram Int 40:6197–6202

    Google Scholar 

  133. Qiao L, Ye Q, Gan JL, Cai HW, Qu RH (2011) Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch. Opt Commun 284:3886–3890

    Google Scholar 

  134. Dong ZR, Ye Q, Qu RH, Fang ZJ (2007) Characteristics of a PLZT electro-optical deflector. Chin Optics Lett 5:540–542

    Google Scholar 

  135. Peters BR, Reardon PJ, Wong JK (2001) Preliminary investigation of an active PLZT lens. In: Righini GC, Honkanen S (eds) Integrated optics devices V, pp 242–248

    Google Scholar 

  136. Tatebayashi T, Yamamoto T, Sato H (1991) Electrooptic variable focal-length lens using PLZT ceramic. Appl Opt 30:5049–5055

    Google Scholar 

  137. Tatebayashi T, Yamamoto T, Sato H (1992) Dual focal point electrooptic lens with a fresnel-zone plate on a PLZT ceramic. Appl Opt 31:2770–2775

    Google Scholar 

  138. Staudigl G, Benien H, Suchentrunk R (2000) Transparent scratch resistant coatings on plastics. Materialwiss Werkstofftech 31:360–364

    Google Scholar 

  139. Peuchert U, Okano Y, Menke Y, Reichel S, Ikesue A (2009) Transparent cubic-ZrO2 ceramics for application as optical lenses. J Eur Ceram Soc 29:283–291

    Google Scholar 

  140. Grujicic M, Bell WC, Pandurangan B (2012) Design and material selection guidelines and strategies for transparent armor systems. Mater Des 34:808–819

    Google Scholar 

  141. Salem JA (2013) Transparent armor ceramics as spacecraft windows. J Am Ceram Soc 96:281–289

    Google Scholar 

  142. Subhash G (2013) Transparent armor materials. Exp Mech 53:1–2

    Google Scholar 

  143. Klein CA (2005) Oxyfluoride glass for high-energy laser windows: thermal lensing issue. Appl Phys Lett 87:231117

    Google Scholar 

  144. Klein CA (2006) Calcium fluoride windows for high-energy chemical lasers. J Appl Phys 100:083101

    Google Scholar 

  145. Pazol B, McGuire P, Gentilman R, Locher J, Askinazi J (2000) Large area flat and curved sapphire window blanks. In: Marker AJ, Arthurs EG (eds) Inorganic optical materials II, pp 52–58

    Google Scholar 

  146. Askinazi J, Wientzen RV, Khattak CP (2001) Development of large aperture, monolithic sapphire optical windows. In: Tustison RW (ed) Window and dome technologies and materials VII, pp 1–11

    Google Scholar 

  147. Askinazi J (1991) Technology trends for high-performance windows

    Google Scholar 

  148. Askinazi J (1993) Functional challenges for optical window materials

    Google Scholar 

  149. Askinazi J (1997) Large aperture, broadband sapphire windows for common aperture, target acquisition, tracking and surveillance systems

    Google Scholar 

  150. Borden MR, Askinazi J (1997) Improving sapphire window strength

    Google Scholar 

  151. Gentilman R, McGuire P, Fiore D, Ostreicher K, Askinazi J (2003) Low-cost sapphire windows. In: Tustison RW (ed) Window and dome technologies VIII, pp 12–17

    Google Scholar 

  152. Gentilman R, McGuire P, Fiore D, Ostreicher K, Askinazi J (2003) Large-area sapphire windows. In: Tustison RW (ed) Window and dome technologies VIII, pp 54–60

    Google Scholar 

  153. Gentilman R, McGuire P, Pazol B, Askinazi J, Steindl R, Locher J (1999) High strength edge-bonded sapphire windows. In: Tustison RW (ed) Window and dome technologies and materials VI, pp 282–287

    Google Scholar 

  154. McGuire P, Pazol B, Gentilman R, Askinazi J, Locher J (2001) Large area edge-bonded flat and curved sapphire windows. In: Tustison RW (ed) Window and dome technologies and materials VII, pp 12–19

    Google Scholar 

  155. Patterson MCL, DiGiovanni AA, Fehrenbacher L, Roy DW (2003) Spinel: gaining momentum in optical applications. In: Tustison RW (ed) Window and dome technologies VIII. SPIE-Int Soc Optical Engineering, Bellingham, pp 71–79

    Google Scholar 

  156. Borrero-Lopez O, Ortiz AL, Gledhill AD, Guiberteau F, Mroz T, Goldman LM et al (2012) Microstructural effects on the sliding wear of transparent magnesium-aluminate spinel. J Eur Ceram Soc 32:3143–3149

    Google Scholar 

  157. Mroz T, Goldman LM, Gledhill AD, Li DS, Padture NP (2012) Nanostructured, infrared-transparent magnesium-aluminate spinel with superior mechanical properties. Int J Appl Ceram Technol 9:83–90

    Google Scholar 

  158. Mroz TJ, Hartnett TM, Wahl JM, Goldman LM, Kirsch J, Lindberg WR (2005) Recent advances in spinel optical ceramic. In: Tustison RW (ed) Window and dome technologies and materials IX. SPIE-Int Soc Optical Engineering, Bellingham, pp 64–70

    Google Scholar 

  159. Ramisetty M, Sastri S, Kashalikar U, Goldman LM, Nag N (2013) Transparent polycrystalline cubic spinels protect and defend. Am Ceram Soc Bull 92:20–25

    Google Scholar 

  160. Beyer RA, Kerwien H (1999) Evaluation of ALON for cannon window application. In: Tustison RW (ed) Window and dome technologies and materials VI, pp 113–118

    Google Scholar 

  161. Krell A, Bales A (2011) Grain size-dependent hardness of transparent magnesium aluminate spinel. Int J Appl Ceram Technol 8:1108–1114

    Google Scholar 

  162. Krell A, Hutzler T, Klimke J, Potthoff A (2010) Fine-grained transparent spinel windows by the processing of different manopowders. J Am Ceram Soc 93:2656–2666

    Google Scholar 

  163. Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-μm Al2O3 for transparent armour applications. J Eur Ceram Soc 29:275–281

    Google Scholar 

  164. Bayya S, Villalobos G, Kim W, Sanghera J, Chin G, Hunt M et al (2013) Recent developments in transparent spinel ceramic and composite windows. Mater Technol Appl Opt Struct Compon Sub-Syst 8837

    Google Scholar 

  165. Klement R, Rolc S, Mikulikova R, Krestan J (2008) Transparent armour materials. J Eur Ceram Soc 28:1091–1095

    Google Scholar 

  166. Sands JM, Fountzoulas CG, Gilde GA, Patel PJ (2009) Modelling transparent ceramics to improve military armour. J Eur Ceram Soc 29:261–266

    Google Scholar 

  167. Vysotsky MS, Pochtenny EK, Gorbatsevich MI (1992) Summartion of fatigure damages under 2-frequency loading. Dokl Akad Nauk BSSR 36:511–514

    Google Scholar 

  168. Vysotsky MS, Pochtenny EK, Gorbatsevich MI, Kurban AV (1991) Fatigure resistance analysis at 2-frequency loading. Dokl Akad Nauk BSSR 35:334–337

    Google Scholar 

  169. Strassburger E (2009) Ballistic testing of transparent armour ceramics. J Eur Ceram Soc 29:267–273

    Google Scholar 

  170. Frungel F, Alberti H, Thorwart W (1962) High-speed X-ray flash cinematography of small objects. J SMPTE-Soc Motion Picture Telev Eng 71:90–92

    Google Scholar 

  171. Frungel F, Thorwart W, Alberti H (1960) High-speed X-ray flash cinematography of small objects. J SMPTE-Soc Motion Picture Telev Eng 69:624

    Google Scholar 

  172. McCauley JW, Strassburger E, Patel P, Paliwal B, Ramesh KT (2013) Experimental observations on dynamic response of selected transparent armor materials. Exp Mech 53:3–29

    Google Scholar 

  173. Strassburger E (2004) Visualization of impact damage in ceramics using the edge-on impact technique. Int J Appl Ceram Technol 1:235–242

    Google Scholar 

  174. Senf H, Strassburger E, Rothenhausler H (1994) Stress wave induced damage and fracture in impacted glasses. J Phys IV 4:741–746

    Google Scholar 

  175. Strassburger E, Hunzinger M, Patel Pl, McCauley JW (2013) Analysis of the fragmentation of AlON and spinel under ballistic impact. J Appl Mech Trans ASME 80

    Google Scholar 

  176. Strassburger E, Patel P, McCauley JW, Templeton DW (2006) High-speed photographic study of wave propagation and impact damage in fused silica and AlON using the edge-on impact (EOI) method. In: Furnish MD, Elert M, Russell TP, White CT (eds) Shock compression of condensed matter—2005, Pts 1 and 2. American Institute of Physical, Melville, pp 892–895

    Google Scholar 

  177. LaSalvia JC, McCauley JW (2010) Inelastic deformation mechanisms and damage in structural ceramics subjected to high-velocity impact. Int J Appl Ceram Technol 7:595–605

    Google Scholar 

  178. Haney EJ, Subhash G (2012) Edge-on-impact response of a coarse-grained magnesium aluminate spinel rod. Int J Impact Eng 40–41:26–34

    Google Scholar 

  179. Bodhak S, Balla VK, Bose S, Bandyopadhyay A, Kashalikar U, Jha SK et al (2011) In vitro biological and tribological properties of transparent magnesium aluminate (Spinel) and aluminum oxynitride (AlON (R)). J Mater Sci Mater Med 22:1511–1519

    Google Scholar 

  180. Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater 5:2178–2188

    Google Scholar 

  181. Bodhak S, Bose S, Bandyopadhyay A (2010) Electrically polarized HAp-coated Ti: in vitro bone cell-material interactions. Acta Biomater 6:641–651

    Google Scholar 

  182. Krishnan M, Tiwari B, Seema S, Kalra N, Biswas P, Rajeswari K et al (2014) Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets. J Mater Sci Mater Med 25:2591–2599

    Google Scholar 

  183. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Google Scholar 

  184. Hanks CT, Wataha JC, Sun ZL (1996) In vitro models of biocompatibility: a review. Dent Mater 12:186–193

    Google Scholar 

  185. Klein CL, Kohler H, Reclaru L, Susz C, Kirkpatrick CJ (1995) Biocompatibility testing of alloys in an in-vitro cell-culture model. J Dent Res 74:921

    Google Scholar 

  186. Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19

    Google Scholar 

  187. Cho MH, Niles A, Huang RL, Inglese J, Austin CP, Riss T et al (2008) A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol In Vitro 22:1099–1106

    Google Scholar 

  188. Negroiu G, Piticescu RM, Chitanu GC, Mihailescu IN, Zdrentu L, Miroiu M (2008) Biocompatibility evaluation of a novel hydroxyapatite-polymer coating for medical implants (in vitro tests). J Mater Sci Mater Med 19:1537–1544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Other Applications. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_10

Download citation

Publish with us

Policies and ethics