Skip to main content

Introduction

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

Transparent materials form a special group of materials that have a wide range of applications in various aspects of our daily life. Transparency, also known as pellucidity or diaphaneity, is a unique physical property of materials, which measures their ability to allow light to pass through them without the presence of scattering. At macroscopic scale, the behavior of the photons follows Snell’s law, because this dimension is much larger than the wavelength of photons. Translucency is another property closely related to transparency, which is also known as translucence or translucidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang SF, Zhang J, Luo DW, Gu F, Tang DY, Dong ZL et al (2013) Transparent ceramics: processing, materials and applications. Prog Solid State Chem 41:20–54

    Article  Google Scholar 

  2. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high-performance polycrystalline Nd-YAG ceramics for solid-state lasers. J Am Ceram Soc 78:1033–1040

    Article  Google Scholar 

  3. Ikesue A, Aung YL (2008) Ceramic laser materials. Nat Photonics 2:721–727

    Article  Google Scholar 

  4. Sanghera J, Bayya S, Villalobos G, Kim W, Frantz J, Shaw B et al (2011) Transparent ceramics for high-energy laser systems. Opt Mater 33:511–518

    Article  Google Scholar 

  5. Sanghera J, Kim W, Villalobos G, Shaw B, Baker C, Frantz J et al (2012) Ceramic laser materials. Materials 5:258–277

    Article  Google Scholar 

  6. Sanghera J, Kim W, Villalobos G, Shaw B, Baker C, Frantz J et al (2013) Ceramic laser materials: past and present. Opt Mater 35:693–699

    Article  Google Scholar 

  7. Krell A, Hutzler T, Klimke J (2009) Transmission physics and consequences for materials selection, manufacturing, and applications. J Eur Ceram Soc 29:207–221

    Article  Google Scholar 

  8. Apetz R, van Bruggen MPB (2003) Transparent alumina: a light-scattering model. J Am Ceram Soc 86:480–486

    Article  Google Scholar 

  9. Ikesue A, Kamata K, Yoshida K (1996) Synthesis of transparent Nd-doped HfO2-Y2O3 ceramics using HIP. J Am Ceram Soc 79:359–364

    Article  Google Scholar 

  10. Ikesue A, Kamata K (1996) Microstructure and optical properties of hot isostatically pressed Nd:YAC ceramics. J Am Ceram Soc 79:1927–1933

    Article  Google Scholar 

  11. Ikesue A, Aung YL, Lupei V (2014) Ceramic lasers. Cambridge University Press, Cambridge

    Google Scholar 

  12. Maiman TH (1960) Optical and microwave-optical experiments in ruby. Phys Rev Lett 4:564–566

    Article  Google Scholar 

  13. Drube J, Struve B, Huber G (1984) Tunable room-temperature CW laser action in Cr3+-GdScAl-garnet. Opt Commun 50:45–48

    Article  Google Scholar 

  14. Struve B, Huber G (1985) The effect of the crystal-field strength on the optical-spectra of Cr3+ in gallium garnet laser crystals. Appl Phys B Photophysics Laser Chem 36:195–201

    Article  Google Scholar 

  15. Moulton PF, Manni JG, Rines GA (1988) Spectroscopic and laser characteristics of Er, Cr-YSGG. IEEE J Quantum Electron 24:960–973

    Article  Google Scholar 

  16. Caird JA, Shinn MD, Kirchoff TA, Smith LK, Wilder RE (1986) Measurements of losses and lasing efficiency in GSGG-Cr, Nd and YAG-Nd laser rods. Appl Opt 25:4294–4305

    Article  Google Scholar 

  17. Harrison J, Welford D, Moulton PF (1989) Threshold analysis of pulsed lasers with application to a room-temperature Co-MgF2 laser. IEEE J Quantum Electron 25:1708–1711

    Article  Google Scholar 

  18. Welford D, Moulton PF (1988) Room-temperature operation of a Co-MgF2 laser. Opt Lett 13:975–977

    Article  Google Scholar 

  19. Walling JC, Jenssen HP, Morris RC, Odell EW, Peterson OG (1979) Broad-band tuning of solid-state Alexandrite laser. J Opt Soc Am 69:373

    Google Scholar 

  20. Walling JC, Peterson OG (1980) High-gain laser performance in Alexandrite. IEEE J Quantum Electron 16:119–120

    Article  Google Scholar 

  21. Walling JC, Peterson OG, Jenssen HP, Morris RC, Odell EW (1980) Tunable alexandrite lasers. IEEE J Quantum Electron 16:1302–1315

    Article  Google Scholar 

  22. Moulton PF (1986) Spectroscopic and laser characteristics of Ti-Al2O3. J Opt Soc Am B Opt Phys 3:125–133

    Article  Google Scholar 

  23. Tsuiki H, Kitazawa K, Masumoto T, Shiroki K, Fueki K (1980) Single-crystal growth of pure and Nd-doped Y2O3 by floating zone method with Xe arc lamp imaging furnace. J Cryst Growth 49:71–76

    Article  Google Scholar 

  24. Tsuiki H, Masumoto T, Kitazawa K, Fueki K (1982) Effect of point-defects on laser oscillation properties of Nd-doped Y2O3. Jpn J Appl Phys Part 1 Regul Papers Short Notes Rev Papers 21:1017–1021

    Google Scholar 

  25. Ebendorffheidepriem H, Seeber W, Ehrt D (1993) Dehydration of phosphate-glasses. J Non-Cryst Solids 163:74–80

    Article  Google Scholar 

  26. Heumann E, Ledig M, Ehrt D, Seeber W, Duczynski EW, Vanderheide HJ et al (1988) CW laser action of Er3+ in double sensitized fluoroaluminate glass at room-temperature. Appl Phys Lett 52:255–256

    Article  Google Scholar 

  27. Ledig M, Heumann E, Ehrt D, Seeber W (1990) Spectroscopic and laser properties of Cr3+, Yb3+, Er3+ fluoride phosphate-glass. Opt Quant Electron 22:S107–S122

    Article  Google Scholar 

  28. Seeber W, Ehrt D, Ebendorffheidepriem H (1994) Spectroscopic and laser properties of Ce3+-Cr3+-Nd3+ co-doped fluoride phosphate and phosphate-glasses. J Non-Cryst Solids 171:94–104

    Article  Google Scholar 

  29. Geusic JE, Marcos HM, Vanuitert LG (1964) Laser oscillation in Nd-doped yttrium aluminium, yttrium gallium and gadolinium garnets. Appl Phys Lett 4:182–184

    Article  Google Scholar 

  30. Deshazer LG, Komai LG (1965) Fluorescence conversion efficiency of neodymium glass. J Opt Soc Am 55:940

    Google Scholar 

  31. Kushida T, Geusic JE, Marcos HM (1968) Optical properties of YAIG-Nd3+. IEEE J Quantum Electron 4:316

    Article  Google Scholar 

  32. Kushida T, Marcos HM, Geusic JE (1968) Laser transition cress section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet. Phys Rev 167:289

    Article  Google Scholar 

  33. Pan YB, Li J, Jiang XB (2013) Advanced optical functional transparent ceramics. Science Press, Beijing

    Google Scholar 

  34. Silvfast WT (2004) Laser fundamentals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Greskovich C, Chernoch JP (1974) Improved polycrysalline ceramic lasers. J Appl Phys 45:4495–4502

    Article  Google Scholar 

  36. Greskovich C, Woods KN (1973) Fabrication of transparent ThO2-doped Y2O3. Am Ceram Soc Bull 52:473–478

    Google Scholar 

  37. Greskovich C, Woods KN (1972) Recent advances in processing of thorium-doped yttrium oxide ceramics. Am Ceram Soc Bull 51:326

    Google Scholar 

  38. Miles GD, Sambell RAJ, Rutherfo J, Stephens GW (1967) Fabrication of fully dense transparent polycrystalline magnesia. Trans Br Ceramic Soc 66:319

    Google Scholar 

  39. Rice RW (1971) Hot-pressing of MgO. J Am Ceram Soc 54:205–207

    Article  Google Scholar 

  40. Greskovich C, Curran MJ, Oclair CR (1972) Preparation of transparent Y2O3-doped ThO2. J Am Ceram Soc 55:324–325

    Article  Google Scholar 

  41. Greskovich C, Brewer JA (2001) Solubility of magnesia in polycrystalline alumina at high temperatures. J Am Ceram Soc 84:420–425

    Article  Google Scholar 

  42. Scott C, Kaliszewski M, Greskovich C, Levinson L (2002) Conversion of polycrystalline Al2O3 into single-crystal sapphire by abnormal grain growth. J Am Ceram Soc 85:1275–1280

    Article  Google Scholar 

  43. Liu WB, Li J, Jiang BX, Zhang D, Pan YB (2012) 2.44 KW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering. J Alloy Compd 538:258–261

    Article  Google Scholar 

  44. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. CRC Press, New York

    Google Scholar 

  45. Ikesue A, Furusato I, Kamata K (1995) Fabrication of polycrystalline transparent YAG cramics by solid-state reaction method. J Am Ceram Soc 78:225–228

    Article  Google Scholar 

  46. Li HL, Liu XJ, Huang LP (2005) Fabrication of transparent cerium-doped lutetium aluminum garnet (LuAG:Ce) ceramics by a solid-state reaction method. J Am Ceram Soc 88:3226–3228

    Article  Google Scholar 

  47. Li HL, Liu XJ, Huang LP (2006) Fabrication of transparent Ce:LuAG ceramics by a solid-state reaction method. J Inorg Mater 21:1161–1166

    Google Scholar 

  48. Li J, Chen Q, Yang LL, Feng GY, Wu WJ, Zheng FS et al (2011) High transmittance of Nd-doped YAG transparent ceramics prepared by solid-state reaction method. Ferroelectrics 411:62–68

    Article  Google Scholar 

  49. Wang NL, Zhang XY, Jiang HT, Dong TT, Yang D (2012) Fabrication of Er3+/Yb3+ co-doped Y2O3 transparent ceramics by solid-state reaction method and its up-conversion luminescence. Mater Chem Phys 135:709–713

    Article  Google Scholar 

  50. Wu YS, Li J, Qiu FG, Pan YB, Liu Q, Guo JK (2006) Fabrication of transparent Yb, Cr:YAG ceramics by a solid-state reaction method. Ceram Int 32:785–788

    Article  Google Scholar 

  51. Lu J, Prabhu M, Song J, Li C, Xu J, Ueda K et al (2000) Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Appl Phy B Lasers Opt 71:469–473

    Article  Google Scholar 

  52. Arabgari S, Malekfar R, Motamedi K (2011) Parameters effects on the surface morphology and structure of Nd:YAG nanopowders synthesized by co-precipitation method. J Nanopart Res 13:597–611

    Article  Google Scholar 

  53. Chen JY, Shi Y, Shi JL (2004) Synthesis of (Y, Gd)2O3: Eu nanopowder by a novel co-precipitation processing. J Mater Res 19:3586–3591

    Article  Google Scholar 

  54. Huang YH, Jiang DL, Zhang JX, Lin QL (2009) Precipitation synthesis and sintering of lanthanum doped yttria transparent ceramics. Opt Mater 31:1448–1453

    Article  Google Scholar 

  55. Huang ZG, Sun XD, Xiu ZM, Chen SW, Tsai CT (2004) Precipitation synthesis and sintering of yttria nanopowders. Mater Lett 58:2137–2142

    Article  Google Scholar 

  56. Ji XB, Deng JG, Kang B, Huang H, Wang X, Jing W et al (2013) Thermal decomposition of Y3Al5O12 precursor synthesized by urea homogeneous co-precipitation. J Anal Appl Pyrol 104:361–365

    Article  Google Scholar 

  57. Li HL, Liu XJ, Xie RJ, Zeng Y, Huang LP (2006) Fabrication of transparent cerium-doped lutetium aluminum garnet ceramics by co-precipitation routes. J Am Ceram Soc 89:2356–2358

    Google Scholar 

  58. Ikegami T, Li JG, Mori T, Moriyoshi Y (2002) Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide. J Am Ceram Soc 85:1725–1729

    Article  Google Scholar 

  59. Li JG, Ikegami T, Mori T (2003) Fabrication of transparent Sc2O3 ceramics with powders thermally pyrolyzed from sulfate. J Mater Res 18:1816–1822

    Article  Google Scholar 

  60. Guo K, Chen HH, Guo XG, Yang XX, Xu FF, Zhao JT (2010) Morphology investigation of yttrium aluminum garnet nano-powders prepared by a sol–gel combustion method. J Alloy Compd 500:34–38

    Article  Google Scholar 

  61. Li DY, Hui Y, Lian JS, Xie TT (2005) Progress in research on nanometer Al2O3 fabricated by sol–gel method. J Rare Earths 23:600–605

    Google Scholar 

  62. Biswas A, Prabhakaran K, Gokhale NM, Sharma SC (2007) Synthesis of nanocrystalline yttria doped ceria powder by urea-formaldehyde polymer gel auto-combustion process. Mater Res Bull 42:609–617

    Article  Google Scholar 

  63. Prabhakaran K, Patil DS, Dayal R, Gokhale NM, Sharma SC (2009) Synthesis of nanocrystalline magnesium aluminate (MgAl2O4) spinel powder by the urea-formaldehyde polymer gel combustion route. Mater Res Bull 44:613–618

    Article  Google Scholar 

  64. Su J, Miao J-h, Xu L-h, Ji Y-q, Wang C-q (2012) Synthesis and characterization of nanocrystalline Nd3+-doped gadolinium scandium aluminum garnet powders by a gel-combustion method. Mater Res Bull 47:1709–1712

    Article  Google Scholar 

  65. Wang N, Zhang X, Bai Z, Sun H, Liu Q, Lu L et al (2011) Synthesis of nanocrystalline ytterbium-doped yttria by citrate-gel combustion method and fabrication of ceramic materials. Ceram Int 37:3133–3138

    Article  Google Scholar 

  66. Huang BT, Ma YQ, Qian SB, Zou D, Zheng GH, Dai ZX (2014) Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG: Ce (5 %) phosphors. Opt Mater 36:1561–1565

    Article  Google Scholar 

  67. Moore CA, McMillen CD, Kolis JW (2013) Hydrothermal growth of single crystals of Lu3Al5O12 (LuAG) and its doped analogues. Cryst Growth Des 13:2298–2306

    Article  Google Scholar 

  68. Qian S, Ma Y, Zan F, Zou D, Dai Z, Zheng G et al (2013) Fine YAG:Ce3+ nanoparticles synthesised by supercritical hydrothermal reaction. Micro Nano Lett 8:201–205

    Article  Google Scholar 

  69. Mancic L, Lojpur V, Marinkovic BA, Dramicanin MD, Milosevic O (2013) Hydrothermal synthesis of nanostructured Y2O3 and (Y0.75Gd0.25)2O3 based phosphors. Opt Mater 35:1817–1823

    Article  Google Scholar 

  70. Sang YH, Qin HM, Liu H, Zhao LL, Wang YN, Jiang HD et al (2013) Partial wet route for YAG powders synthesis leading to transparent ceramic: a core-shell solid-state reaction process. J Eur Ceram Soc 33:2617–2623

    Article  Google Scholar 

  71. Ballato J, Serivalsatit K (2011) Sub-micron grained highly transparent sesquioxide ceramics: synthesis, processing, and properties. In: Laser Technology for Defense and Security Vii. 8039

    Google Scholar 

  72. Kokuoz BY, Serivalsatit K, Kokuoz B, Geiculescu O, McCormick E, Ballato J (2009) Er-doped Y2O3 nanoparticles: a comparison of different synthesis methods. J Am Ceram Soc 92:2247–2253

    Article  Google Scholar 

  73. Serivalsatit K, Ballato J (2010) Submicrometer grain-sized transparent erbium-doped scandia ceramics. J Am Ceram Soc 93:3657–3662

    Article  Google Scholar 

  74. Serivalsatit K, Kokuoz B, Yazgan-Kokuoz B, Kennedy M, Ballato J (2010) Synthesis, processing, and properties of submicrometer-grained highly transparent yttria ceramics. J Am Ceram Soc 93:1320–1325

    Article  Google Scholar 

  75. Serivalsatit K, Kokuoz BY, Kokuoz B, Ballato J (2009) Nanograined highly transparent yttria ceramics. Opt Lett 34:1033–1035

    Article  Google Scholar 

  76. Fedyk R, Hreniak D, Lojkowski W, Strek W, Matysiak H, Grzanka E et al (2007) Method of preparation and structural properties of transparent YAG nanoceramics. Opt Mater 29:1252–1257

    Article  Google Scholar 

  77. Pazik R, Gluchowski P, Hreniak D, Strek W, Ros M, Fedyk R et al (2008) Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic. Opt Mater 30:714–718

    Article  Google Scholar 

  78. Koechner W (2006) Solid-state laser engineering, 6th edn. Springer, Berlin

    Google Scholar 

  79. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  80. Siegman AE (1986) Lasers. University Science Books, Sausalito

    Google Scholar 

  81. Powell RC (1988) Physics of solid state laser materials. Springer, New York

    Google Scholar 

  82. Henderson B, Bartram RH (2000) Crystal field engineering of solid-state laser materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  83. Svelto O (2010) Principles of lasers, 5th edn. Springer, New York

    Book  Google Scholar 

  84. Carter CB, Norton MG (2007) Ceramics materials: science and engineering. Springer, Berlin

    Google Scholar 

  85. Aldinger F, Claussen N, Kaneno M, Koumoto K, Sōmiya S, Spriggs RM et al (2003) Handbook of advanced ceramics: volume II processing and their applications. Elsevier, Amsterdam

    Google Scholar 

  86. Barsoum MW (2003) Fundamentals of ceramics. Institute of Physics Publishing (IoP), UK

    Book  Google Scholar 

  87. Pan YB, Li J, Jiang BX (2013) Advanced optical functional transparent ceramics. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgments

One of the authors (LBK) would like to acknowledge the financial supports from the start-up grant (SUG/2012) from Nanyang Technological University and AcRF Tier 1 project (RG44/12) from Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Introduction. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_1

Download citation

Publish with us

Policies and ethics