Skip to main content

TRP Channels in Cold Transduction

  • Chapter
  • First Online:
TRP Channels in Sensory Transduction

Abstract

In the somatosensory system, cold thermoreceptor neurons and cold nociceptors are responsible for the detection of environmental low temperatures. The underlying machinery is far from simple; it is a result of the participation of several classes of transduction and voltage-gated ion channels that functionally coexist to give shape to the cold-induced receptor potential and subsequent action potential firing in response to cold stimulation. The cold-induced electrical responses begin in the free nerve endings of these sensory neurons, where a subgroup of thermosensitive Transient Receptor Potential channels (thermoTRPs) plays a critical role. These channels have evolved as molecular thermal sensors activated by a wide range of cold temperatures, and they have been proposed as key elements of the transduction machinery responsible for detection of environmental cold in primary somatosensory neurons. In this chapter, we summarize the most important functional properties of the primary sensory neurons involved in cutaneous cold detection, and the corresponding role of the thermoTRP channels TRPM8, TRPA1 and TRPC5 in cold transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almaraz L, Manenschijn JA, de la Pena E, Viana F (2014) Trpm8. Handb Exp Pharmacol 222:547–579

    CAS  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Light E, Vastani N, Vallortigara J, Bierhaus A, Fleming T, Bevan S (2013) Methylglyoxal evokes pain by stimulating TRPA1. PLoS One 8:e77986

    PubMed Central  CAS  PubMed  Google Scholar 

  • Axelsson HE, Minde JK, Sonesson A, Toolanen G, Hogestatt ED, Zygmunt PM (2009) Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience 162:1322–1332

    CAS  PubMed  Google Scholar 

  • Babes A, Zorzon D, Reid G (2004) Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 20:2276–2282

    PubMed  Google Scholar 

  • Babes A, Ciobanu AC, Neacsu C, Babes RM (2011) TRPM8, a sensor for mild cooling in mammalian sensory nerve endings. Curr Pharm Biotechnol 12:78–88

    CAS  PubMed  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    CAS  PubMed  Google Scholar 

  • Bang S, Hwang SW (2009) Polymodal ligand sensitivity of TRPA1 and its modes of interactions. J Gen Physiol 133:257–262

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barabas ME, Kossyreva EA, Stucky CL (2012) TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons. PLoS One 7:e47988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baraldi PG, Preti D, Materazzi S, Geppetti P (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 53:5085–5107

    CAS  PubMed  Google Scholar 

  • Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–12252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  • Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    CAS  PubMed  Google Scholar 

  • Belmonte C, Brock JA, Viana F (2009) Converting cold into pain. Exp Brain Res 196:13–30

    PubMed  Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32:1025–1043

    CAS  PubMed  Google Scholar 

  • Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci U S A 101:15494–15499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braun HA, Bade H, Hensel H (1980) Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflugers Arch 386:1–9

    CAS  PubMed  Google Scholar 

  • Brock JA, Pianova S, Belmonte C (2001) Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea. J Physiol 533:493–501

    CAS  PubMed  Google Scholar 

  • Campero M, Serra J, Ochoa JL (1996) C-polymodal nociceptors activated by noxious low temperature in human skin. J Physiol 497(Pt 2):565–572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campero M, Serra J, Bostock H, Ochoa JL (2001) Slowly conducting afferents activated by innocuous low temperature in human skin. J Physiol 535:855–865

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caspani O, Heppenstall PA (2009) TRPA1 and cold transduction: an unresolved issue? J Gen Physiol 133:245–249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  • Chen J et al (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152:1165–1172

    CAS  PubMed  Google Scholar 

  • Chen J, Kang D, Xu J, Lake M, Hogan JO, Sun C, Walter K, Yao B, Kim D (2013) Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 4:2501

    PubMed Central  PubMed  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    CAS  PubMed  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ, Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    CAS  PubMed  Google Scholar 

  • Craig AD, Krout K, Andrew D (2001) Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 86:1459–1480

    CAS  PubMed  Google Scholar 

  • Croze S, Duclaux R, Kenshalo DR (1976) The thermal sensitivity of the polymodal nociceptors in the monkey. J Physiol 263:539–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284:1570–1582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darian-Smith I, Johnson KO, Dykes R (1973) “Cold” fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J Neurophysiol 36:325–346

    CAS  PubMed  Google Scholar 

  • de la Peña E, Malkia A, Cabedo H, Belmonte C, Viana F (2005) The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 567:415–426

    PubMed Central  PubMed  Google Scholar 

  • del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D’Amours M, Deering N, Brenner GJ, Costigan M, Hayward NJ, Chong JA, Fanger CM, Woolf CJ, Patapoutian A, Moran MM (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci 30:15165–15174

    PubMed Central  PubMed  Google Scholar 

  • Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    CAS  PubMed  Google Scholar 

  • Dhaka A, Earley TJ, Watson J, Patapoutian A (2008) Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 28:566–575

    CAS  PubMed  Google Scholar 

  • Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282:13180–13189

    CAS  PubMed  Google Scholar 

  • Dragoni I, Guida E, McIntyre P (2006) The cold and menthol receptor TRPM8 contains a functionally important double cysteine motif. J Biol Chem 281:37353–37360

    CAS  PubMed  Google Scholar 

  • Dunham JP, Leith JL, Lumb BM, Donaldson LF (2010) Transient receptor potential channel A1 and noxious cold responses in rat cutaneous nociceptors. Neuroscience 165:1412–1419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erler I, Al-Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA (2006) Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem 281:38396–38404

    CAS  PubMed  Google Scholar 

  • Fajardo O, Meseguer V, Belmonte C, Viana F (2008) TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci 28:7863–7875

    CAS  PubMed  Google Scholar 

  • Fujita F, Uchida K, Takaishi M, Sokabe T, Tominaga M (2013) Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci 33:6154–6159

    CAS  PubMed  Google Scholar 

  • Gentry C, Stoakley N, Andersson DA, Bevan S (2010) The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain 6:4

    PubMed Central  PubMed  Google Scholar 

  • Hensel H (1981) Thermoreception and temperature regulation. Monogr Physiol Soc 38:1–321

    CAS  PubMed  Google Scholar 

  • Hensel H, Iahn M (1973) Cutaneous thermoreceptors. J Neurophysiol 14:377–385. (Handbook Sensory Physiology NY)

    Google Scholar 

  • Hensel H, Zotterman Y (1951a) The effect of menthol on the thermoreceptors. Acta Physiol Scand 24:27–34

    CAS  PubMed  Google Scholar 

  • Hensel H, Zotterman Y (1951b) The response of the cold receptors to constant cooling. Acta Physiol Scand 22:96–105

    CAS  PubMed  Google Scholar 

  • Heppelmann B, Messlinger K, Neiss WF, Schmidt RF (1990) Ultrastructural three-dimensional reconstruction of group III and group IV sensory nerve endings (“free nerve endings”) in the knee joint capsule of the cat: evidence for multiple receptive sites. J Comp Neurol 292:103–116

    CAS  PubMed  Google Scholar 

  • Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hjerling-Leffler J, Alqatari M, Ernfors P, Koltzenburg M (2007) Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J Neurosci 27:2435–2443

    CAS  PubMed  Google Scholar 

  • Hoffmann T, Kistner K, Miermeister F, Winkelmann R, Wittmann J, Fischer MJ, Weidner C, Reeh PW (2013) TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur J Pain 17:1472–1482

    CAS  PubMed  Google Scholar 

  • Iriuchijima J, Zotterman Y (1960) The specificity of afferent cutaneous C fibres in mammals. Acta Physiol Scand 49:267–278

    CAS  PubMed  Google Scholar 

  • Jabba S, Goyal R, Sosa-Pagan JO, Moldenhauer H, Wu J, Kalmeta B, Bandell M, Latorre R, Patapoutian A, Grandl J (2014) Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82:1017–1031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274:7325–7333

    CAS  PubMed  Google Scholar 

  • Jiang LH, Gamper N, Beech DJ (2011) Properties and therapeutic potential of transient receptor potential channels with putative roles in adversity: focus on TRPC5, TRPM2 and TRPA1. Curr Drug Targets 12:724–736

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    CAS  PubMed  Google Scholar 

  • Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464:597–600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27:9874–9884

    CAS  PubMed  Google Scholar 

  • Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106:1273–1278

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B (2010) Agonist-induced changes in Ca(2+ ) permeation through the nociceptor cation channel TRPA1. Biophys J 98:773–783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD (2010) TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150:340–350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knowlton WM, Palkar R, Lippoldt EK, McCoy DD, Baluch F, Chen J, McKemy DD (2013) A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci 33:2837–2848

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493:596–606

    CAS  PubMed  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    CAS  PubMed  Google Scholar 

  • LaMotte RH, Thalhammer JG (1982) Response properties of high-threshold cutaneous cold receptors in the primate. Brain Res 244:279–287

    CAS  PubMed  Google Scholar 

  • Latorre R, Brauchi S, Madrid R, Orio P (2011) A cool channel in cold transduction. Physiology (Bethesda) 26:273–285

    CAS  Google Scholar 

  • Linte RM, Ciobanu C, Reid G, Babes A (2007) Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res 178:89–98

    CAS  PubMed  Google Scholar 

  • Lippoldt EK, Elmes RR, McCoy DD, Knowlton WM, McKemy DD (2013) Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J Neurosci 33:12543–12552

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:1674–1681

    CAS  PubMed  Google Scholar 

  • Macpherson LJ, Patapoutian A (2010) Channels: flies feel your pain. Nat Chem Biol 6:252–253

    CAS  PubMed  Google Scholar 

  • Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929–934

    CAS  PubMed  Google Scholar 

  • Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007a) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    CAS  PubMed  Google Scholar 

  • Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007b) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    CAS  PubMed  Google Scholar 

  • Madrid R, Pertusa M (2014) Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. Curr Top Membr 74:293–324

    PubMed  Google Scholar 

  • Madrid R, Donovan-Rodriguez T, Meseguer V, Acosta MC, Belmonte C, Viana F (2006) Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 26:12512–12525

    CAS  PubMed  Google Scholar 

  • Madrid R, de la Peña E, Donovan-Rodriguez T, Belmonte C, Viana F (2009) Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J Neurosci 29:3120–3131

    CAS  PubMed  Google Scholar 

  • Malkia A, Madrid R, Meseguer V, de la Peña E, Valero M, Belmonte C, Viana F (2007) Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 581:155–174

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCoy DD, Knowlton WM, McKemy DD (2011) Scraping through the ice: uncovering the role of TRPM8 in cold transduction. Am J Physiol Regul Integr Comp Physiol 300:R1278–R1287

    PubMed Central  CAS  PubMed  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    CAS  PubMed  Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    Google Scholar 

  • Morenilla-Palao C, Pertusa M, Meseguer V, Cabedo H, Viana F (2009) Lipid raft segregation modulates TRPM8 channel activity. J Biol Chem 284:9215–9224

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morenilla-Palao C, Luis E, Fernandez-Pena C, Quintero E, Weaver JL, Bayliss DA, Viana F (2014) Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep 8:1571–1582

    CAS  PubMed  Google Scholar 

  • Myers BR, Sigal YM, Julius D (2009) Evolution of thermal response properties in a cold-activated TRP channel. PLoS One 4:e5741

    PubMed Central  PubMed  Google Scholar 

  • Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–4061

    CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Owsianik G (2011) Irritating channels: the case of TRPA1. J Phys 589:1543–1549

    CAS  Google Scholar 

  • Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458

    CAS  PubMed  Google Scholar 

  • Noel J, Zimmermann K, Busserolles J, Deval E, Alloui A, Diochot S, Guy N, Borsotto M, Reeh P, Eschalier A, Lazdunski M (2009) The mechano-activated K + channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28:1308–1318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273:10279–10287

    CAS  PubMed  Google Scholar 

  • Okazawa M, Inoue W, Hori A, Hosokawa H, Matsumura K, Kobayashi S (2004) Noxious heat receptors present in cold-sensory cells in rats. Neurosci Lett 359:33–36

    CAS  PubMed  Google Scholar 

  • Orio P, Madrid R, de la Peña E, Parra A, Meseguer V, Bayliss DA, Belmonte C, Viana F (2009) Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors. J Physiol 587:1961–1976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orio P, Parra A, Madrid R, Gonzalez O, Belmonte C, Viana F (2012) Role of Ih in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 108:3009–3023

    Google Scholar 

  • Parra A, Madrid R, Echevarria D, Del OS, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C (2010) Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 16:1396–1399

    CAS  PubMed  Google Scholar 

  • Pedretti A, Marconi C, Bettinelli I, Vistoli G (2009) Comparative modeling of the quaternary structure for the human TRPM8 channel and analysis of its binding features. Biochim Biophys Acta 1788:973–982

    CAS  PubMed  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    CAS  PubMed  Google Scholar 

  • Pertusa M, Madrid R, Morenilla-Palao C, Belmonte C, Viana F (2012) N-Glycosylation of TRPM8 Ion Channels Modulates Temperature Sensitivity of Cold Thermoreceptor Neurons. J Biol Chem 287:18218–18229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pertusa M, González A, Hardy P, Madrid R, Viana F (2014) Bidirectional modulation of thermal and chemical sensitivity of TRPM8 channels by the initial region of the N-terminal domain. J Biol Chem 289:21828–21843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phelps CB, Gaudet R (2007) The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem 282:36474–36480

    CAS  PubMed  Google Scholar 

  • Pogorzala LA, Mishra SK, Hoon MA (2013) The cellular code for mammalian thermosensation. J Neurosci 33:5533–5541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F (2005) Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci 25:11322–11329

    CAS  PubMed  Google Scholar 

  • Reid G, Flonta ML (2001) Physiology. Cold current in thermoreceptive neurons. Nature 413:480

    CAS  PubMed  Google Scholar 

  • Reid G, Babes A, Pluteanu F (2002) A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 545:595–614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van’t Veer A, Meloni EG, Carlezon WA, Jr, Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137:761–772

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    CAS  PubMed  Google Scholar 

  • Sarria I, Ling J, Zhu MX, Gu JG (2011) TRPM8 acute desensitization is mediated by calmodulin and requires PIP(2): distinction from tachyphylaxis. J Neurophysiol 106:3056–3066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S (2007) Cold sensitivity of recombinant TRPA1 channels. Brain Res 1160:39–46

    CAS  PubMed  Google Scholar 

  • Simone DA, Kajander KC (1996) Excitation of rat cutaneous nociceptors by noxious cold. Neurosci Lett 213:53–56

    CAS  PubMed  Google Scholar 

  • Simone DA, Kajander KC (1997) Responses of cutaneous A-fiber nociceptors to noxious cold. J Neurophysiol 77:2049–2060

    CAS  PubMed  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    CAS  PubMed  Google Scholar 

  • Sura L, Zima V, Marsakova L, Hynkova A, Barvik I, Vlachova V (2012) C-terminal acidic cluster is involved in Ca2+ -induced regulation of human transient receptor potential ankyrin 1 channel. J Biol Chem 287:18067–18077

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y (2008) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin) 2:287–298

    Google Scholar 

  • Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 27:14147–14157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JA, Damann N, Everaerts W, Benoit M, Janssens A, Vennekens R, Viana F, Nemery B, Nilius B, Voets T (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 12:1293–1299

    CAS  PubMed  Google Scholar 

  • Taylor-Clark TE, Undem BJ, Macglashan DW, Jr, Ghatta S, Carr MJ, McAlexander MA (2008) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73:274–281

    CAS  PubMed  Google Scholar 

  • Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75:820–829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    CAS  PubMed  Google Scholar 

  • Tsuruda PR, Julius D, Minor DL, Jr (2006) Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51:201–212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vetter I, Hein A, Sattler S, Hessler S, Touska F, Bressan E, Parra A, Hager U, Leffler A, Boukalova S, Nissen M, Lewis RJ, Belmonte C, Alzheimer C, Huth T, Vlachova V, Reeh PW, Zimmermann K (2013) Amplified cold transduction in native nociceptors by M-channel inhibition. J Neurosci 33:16627–16641

    CAS  PubMed  Google Scholar 

  • Viana F, de la Peña E, Belmonte C (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 5:254–260

    CAS  PubMed  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    CAS  PubMed  Google Scholar 

  • Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007a) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174–182

    CAS  PubMed  Google Scholar 

  • Voets T, Owsianik G, Nilius B (2007b) TRPM8. Handb Exp Pharmacol 179:329–344

    CAS  PubMed  Google Scholar 

  • Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15:573–589.

    Google Scholar 

  • Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER (2008) The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283:32691–32703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xing H, Ling J, Chen M, Gu JG (2006) Chemical and cold sensitivity of two distinct populations of TRPM8-expressing somatosensory neurons. J Neurophysiol 95:1221–1230

    CAS  PubMed  Google Scholar 

  • Yudin Y, Rohacs T (2012) Regulation of TRPM8 channel activity. Mol Cell Endocrinol 353:68–74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Mak S, Li L, Parra A, Denlinger B, Belmonte C, McNaughton PA (2012) Direct inhibition of the cold-activated TRPM8 ion channel by Galphaq. Nat Cell Biol 14:851–858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zholos AV (2014) TRPC5. Handb Exp Pharmacol 222:129–156

    CAS  PubMed  Google Scholar 

  • Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:855–858

    CAS  PubMed  Google Scholar 

  • Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 108:18114–18119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279

    CAS  PubMed  Google Scholar 

  • Zygmunt PM, Hogestatt ED (2014) TRPA1. Handb Exp Pharmacol 222:583–630

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Grants CONICYT Anillo ACT-1113 (RM, MP, GU), FONDECYT 1131064 (RM), FONDECYT 11130144 (MP) and FONDECYT 3150431 (AG). We thank Dr. Carlos Belmonte and Dr. Annika Mälkiä for comments to the manuscript. We apologise for omission of relevant work due to space constraints. RP hold a PhD fellowship from CONICYT. We thank the support of VRIDEI-USACH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Madrid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González, A., Ugarte, G., Piña, R., Pertusa, M., Madrid, R. (2015). TRP Channels in Cold Transduction. In: Madrid, R., Bacigalupo, J. (eds) TRP Channels in Sensory Transduction. Springer, Cham. https://doi.org/10.1007/978-3-319-18705-1_9

Download citation

Publish with us

Policies and ethics