Skip to main content

Drosophila Models of Cardiac Aging and Disease

  • Chapter
  • First Online:
Life Extension

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 3))

  • 1131 Accesses

Abstract

Cardiac dysfunction is a critical problem in the aging population, with heart disease the number one cause of death in humans. While much has been learned about the characteristics of the aging heart from human longitudinal and cohort studies, as well as from vertebrate animal models, substantial logistical obstacles exist to the study of these phenomena in long-lived animals or humans. The emergence of Drosophila as a short-lived model system for studying cardiac function across ages has thus been an important factor in boosting understanding of conserved changes during cardiac aging. Here we discuss established and emerging methodology for assessment of cardiac function in Drosophila and review conserved changes to function during normal aging that have been observed in flies. We also review genetic factors contributing to cardiac aging that have been identified and studied using these techniques, including genes involved in stress response, contractile function, ion exchange, and nutrient sensing. Further, we discuss the use of Drosophila to study longitudinal effects of environmental interventions, such as exercise, on cardiac function. Lastly, we compare transcriptional changes induced by various methods of longevity extension in Drosophila and point out common pathways induced by selective breeding, exercise and dietary restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abildtrup M, Shattock M (2013) Cardiac dysautonomia in Huntington’s disease. J Huntingtons Dis 2(3):251–261

    PubMed  Google Scholar 

  • Abraham DM, Wolf MJ (2013) Disruption of sarcoendoplasmic reticulum calcium ATPase function in Drosophila leads to cardiac dysfunction. PLoS ONE 8(10):e77785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akasaka TS, Klinedinst K, Ocorr et al (2006) The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proc Natl Acad Sci U S A 103(32):11999–12004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allikian MJ, Bhabha G, Dospoy P et al (2007) Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Hum Mol Genet 16(23):2933–2943

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Hunter JJ, Ross J Jr et al (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88(3):393–403

    Article  CAS  PubMed  Google Scholar 

  • Arrasate M, Finkbeiner S (2012) Protein aggregates in Huntington’s disease. Exp Neurol 238(1):1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai H, Kang P, Hernandez AM et al (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9(11):e1003941

    Article  PubMed Central  PubMed  Google Scholar 

  • Bazzell B, Ginzberg S, Healy L et al (2013) Dietary composition regulates Drosophila mobility and cardiac physiology. J Exp Biol 216(Pt 5):859–868

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhandari P, Song M, Chen Y et al (2014) Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ Res 114(2):257–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birse RT, Choi J, Reardon K et al (2010) High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12(5):533–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brenman JE, Chao DS, Gee SH et al (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5):757–767

    Article  CAS  PubMed  Google Scholar 

  • Brundel BJ, Henning RH, Ke L et al (2006) Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. J Mol Cell Cardiol 41(3):555–562

    Article  CAS  PubMed  Google Scholar 

  • Burch GE, Sohal RS, Fairbanks LD (1970) Senescent changes in the heart of Drosophila repleta Wollaston. Nature 225(5229):286–288

    Article  CAS  PubMed  Google Scholar 

  • Cammarato A, Ahrens CH, Alayari NN et al (2011) A mighty small heart: the cardiac proteome of adult Drosophila melanogaster. PLoS ONE 6(4):e18497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cammarato A, Dambacher CM, Knowles AF et al (2008) Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol Biol Cell 19(2):553–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong ZZ, Shang YC, Maiese K (2011) Cardiovascular disease and mTOR signaling. Trends Cardiovasc Med 21(5):151–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292(5514):104–106

    Article  CAS  PubMed  Google Scholar 

  • Coquin L, Feala JD, McCulloch AD et al (2008) Metabolomic and flux-balance analysis of age-related decline of hypoxia tolerance in Drosophila muscle tissue. Mol Syst Biol 4:233

    Article  PubMed Central  PubMed  Google Scholar 

  • Corrado G, Lissoni A, Beretta S et al (2002) Prognostic value of electrocardiograms, ventricular late potentials, ventricular arrhythmias, and left ventricular systolic dysfunction in patients with Duchenne muscular dystrophy. Am J Cardiol 89(7):838–841

    Article  PubMed  Google Scholar 

  • Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144(1):79–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehsani AA, Spina RJ, Peterson LR et al (2003) Attenuation of cardiovascular adaptations to exercise in frail octogenarians. J Appl Physiol (1985) 95(5):1781–1788

    Google Scholar 

  • Evans EM, Racette SB, Peterson LR et al (2005) Aerobic power and insulin action improve in response to endurance exercise training in healthy 77–87 yr olds. J Appl Physiol (1985) 98(1):40–45

    Google Scholar 

  • Fink M, Callol-Massot C, Chu A et al (2009) A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46(2):101–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finkbeiner S (2011) Huntington’s Disease. Cold Spring Harb Perspect Biol 3(6):a007476

    Article  PubMed Central  PubMed  Google Scholar 

  • Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8(2):113–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greer ER, Perez CL, Van Gilst MR et al (2008) Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 8(2):118–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grewal SS (2009) Insulin/TOR signaling in growth and homeostasis: a view from the fly world. Int J Biochem Cell Biol 41(5):1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Grossman TR, Gamliel A, Wessells RJ et al (2011) Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet 7(11):e1002344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grueter CE, van Rooij E, Johnson BA et al (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149(3):671–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunawardena S, Goldstein LS (2005) Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways. Arch Neurol 62(1):46–51

    Article  PubMed  Google Scholar 

  • Jain S, Goldstein DS (2012) Cardiovascular dysautonomia in Parkinson disease: from pathophysiology to pathogenesis. Neurobiol Dis 46(3):572–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaushik G, Fuhrmann A, Cammarato A et al (2011) In situ mechanical analysis of myofibrillar perturbation and aging on soft, bilayered Drosophila myocardium. Biophys J 101(11):2629–2637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laker RC, Xu P, Ryall KA et al (2014) A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 289(17):12005–12015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Bassel-Duby R, Olson EN (2014a) Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. Proc Natl Acad Sci U S A 111(26):9491–9496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Budanov AV, Park EJ et al (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327(5970):1223–1228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KP, Simpson SJ, Clissold FJ et al (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci U S A 105(7):2498–2503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee TE, Yu L, Wolf MJ et al (2014b) Galactokinase is a novel modifier of calcineurin-induced cardiomyopathy in Drosophila. Genetics [Epub ahead of print]. PubMed ID: 25081566

    Google Scholar 

  • Li A, Ahsen OO, Liu JJ et al (2013) Silencing of the Drosophila ortholog of SOX5 in heart leads to cardiac dysfunction as detected by optical coherence tomography. Hum Mol Genet 22(18):3798–3806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li A, Zhou C, Moore J et al (2011) Changes in the expression of the Alzheimer’s disease-associated presenilin gene in Drosophila heart leads to cardiac dysfunction. Curr Alzheimer Res 8(3):313–322

    Article  PubMed Central  PubMed  Google Scholar 

  • Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim HY, Wang W, Wessells RJ et al (2011) Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in Drosophila. Genes Dev 25(2):189–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luong N, Davies CR, Wessells RJ et al (2006) Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 4(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Melkani GC, Trujillo AS, Ramos R et al (2013) Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet 9(12):e1004024

    Article  PubMed Central  PubMed  Google Scholar 

  • Mery A, Taghli-Lamallem O, Clark KA et al (2008) The Drosophila muscle LIM protein, Mlp84B, is essential for cardiac function. J Exp Biol 211(Pt 1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monnier V, Iche-Torres M, Rera M et al (2012) dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS Genet 8(11):e1003081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Na J, Musselman LP, Pendse J et al (2013) A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet 9(1):e1003175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ocorr K, Akasaka T, Bodmer R (2007a) Age-related cardiac disease model of Drosophila. Mech Ageing Dev 128(1):112–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ocorr K, Reeves NL, Wessells RJ et al (2007b) KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci U S A 104(10):3943–3948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’ Neill (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653

    Article  PubMed  Google Scholar 

  • Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155(3):699–712

    Article  CAS  PubMed  Google Scholar 

  • Paternostro G, Vignola C, Bartsch DU et al (2001) Age-associated cardiac dysfunction in Drosophila melanogaster. Circ Res 88(10):1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Piazza N, Gosangi B, Devilla S et al (2009a) Exercise-training in young Drosophila melanogaster reduces age-related decline in mobility and cardiac performance. PLoS ONE 4(6):e5886

    Article  PubMed Central  PubMed  Google Scholar 

  • Piazza N, Hayes M, Martin I et al (2009b) Multiple measures of functionality exhibit progressive decline in a parallel, stochastic fashion in Drosophila Sod2 null mutants. Biogerontology 10(5):637–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piazza N, Wessells RJ (2011) Drosophila models of cardiac disease. Prog Mol Biol Transl Sci 100:155–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian L, Bodmer R (2009) Partial loss of GATA factor Pannier impairs adult heart function in Drosophila. Hum Mol Genet 18(17):3153–3163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian L, Bodmer R (2012) Probing the polygenic basis of cardiomyopathies in Drosophila. J Cell Mol Med 16(5):972–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian L, Wythe JD, Liu J et al (2011) Tinman/Nk2–5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. J Cell Biol 193(7):1181–1196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman MM, Sykiotis GP, Nishimura M et al (2013) Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging Cell 12(4):554–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santalla M, Valverde CA, Harnichar E et al (2014) Aging and CaMKII alter intracellular Ca2 + transients and heart rhythm in Drosophila melanogaster. PLoS ONE 9(7):e101871

    Article  PubMed Central  PubMed  Google Scholar 

  • Seyres D, Roder L, Perrin L (2012) Genes and networks regulating cardiac development and function in flies: genetic and functional genomic approaches. Brief Funct Genomics 11(5):366–374

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D (2009) Macronutrient balance and lifespan. Aging (Albany NY) 1(10):875–880

    CAS  Google Scholar 

  • Skorupa DA, Dervisefendic A, Zwiener J et al (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7(4):478–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spindler SR, Li R, Dhahbi JM et al (2012) Statin treatment increases lifespan and improves cardiac health in Drosophila by decreasing specific protein prenylation. PLoS ONE 7(6):e39581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spletter ML, Schnorrer F (2014) Transcriptional regulation and alternative splicing cooperate in muscle fiber-type specification in flies and mammals. Exp Cell Res 321(1):90–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sujkowski A, Saunders S, Tinkerhess M et al (2012) dFatp regulates nutrient distribution and long-term physiology in Drosophila. Aging Cell 11(6):921–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sussman MA, Lim HW, Gude N et al (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281(5383):1690–1693

    Article  CAS  PubMed  Google Scholar 

  • Taghli-Lamallem O, Akasaka T, Hogg G et al (2008) Dystrophin deficiency in Drosophila reduces lifespan and causes a dilated cardiomyopathy phenotype. Aging Cell 7(2):237–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taghli-Lamallem O, Jagla K, Chamberlain JS et al (2014) Mechanical and non-mechanical functions of Dystrophin can prevent cardiac abnormalities in Drosophila. Exp Gerontol 49:26–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taigen T, De LJ, Windt H, Lim W et al (2000) Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 97(3):1196–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang M, Yuan W, Fan X et al (2013) Pygopus maintains heart function in aging Drosophila independently of canonical Wnt signaling. Circ Cardiovasc Genet 6(5):472–480

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Kopelman A, Epstein D et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292(5514):107–110

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Post S, Yu K (2014) Nutrient control of Drosophila longevity. Trends Endocrinol Metab 25(10):509–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tinkerhess MJ, Ginzberg S, Piazza N et al (2012a) Endurance training protocol and longitudinal performance assays for Drosophila melanogaster. J Vis Exp 61:3786

    PubMed  Google Scholar 

  • Tinkerhess MJ, Healy L, Morgan M et al (2012b) The Drosophila PGC-1alpha homolog spargel modulates the physiological effects of endurance exercise. PLoS ONE 7(2):e31633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venkatesh TV, Park M, Ocorr K et al (2000) Cardiac enhancer activity of the homeobox gene tinman depends on CREB consensus binding sites in Drosophila. Genesis 26(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan MC, Kaushik G, Engler AJ et al (2014) A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function. Circ Res 114(2):e6–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Wessells RJ, Bodmer R (2004) Screening assays for heart function mutants in Drosophila. Biotechniques 37(1):58–60

    CAS  PubMed  Google Scholar 

  • Wessells RJ, Fitzgerald E, Cypser JR et al (2004) Insulin regulation of heart function in aging fruit flies. Nat Genet 36(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Wessells R, Fitzgerald E, Piazza N et al (2009) d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila. Aging Cell 8(5):542–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitaker R, Gil MP, Ding F et al (2014) Dietary switch reveals fast coordinated gene expression changes in Drosophila melanogaster. Aging (Albany NY) 6(5):355–368

    Google Scholar 

  • Wilkins BJ, Molkentin JD (2002) Calcineurin and cardiac hypertrophy: where have we been? Where are we going? J Physiol 541(Pt 1):1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf MJ, Amrein H, Izatt JA et al (2006) Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci U S A 103(5):1394–1399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf MJ, Rockman HA (2011) Drosophila, genetic screens, and cardiac function. Circ Res 109(7):794–806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu L, Daniels J, Glaser AE et al (2013) Raf-mediated cardiac hypertrophy in adult Drosophila. Dis Model Mech 6(4):964–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaffran S, Reim I, Qian L et al (2006) Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 133(20):4073–4083

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ke L, Mackovicova K et al (2011) Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for atrial fibrillation. J Mol Cell Cardiol 51(3):381–389

    Article  CAS  PubMed  Google Scholar 

  • Ziemssen T, Reichmann H (2010) Cardiovascular autonomic dysfunction in Parkinson’s disease. J Neurol Sci 289(1–2):74–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gerald Dorn for use of unpublished images, and Rolf Bodmer and Leah Cannon for helpful and generous discussion prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wessells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sujkowski, A., Wessells, R. (2015). Drosophila Models of Cardiac Aging and Disease. In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_6

Download citation

Publish with us

Policies and ethics