Skip to main content

Essential and Nonessential Micronutrients and Sport

  • Chapter
Nutritional Supplements in Sports and Exercise

Abstract

The purpose of this chapter is to review the role of micronutrients in sport. Attention is given to the function of micronutrients in the body, examples of quality dietary sources of each micronutrient, and an assessment of the literature examining how the recommended daily intake of a micronutrient may or may not change with exercise. The discussion includes plausible biological mechanisms of proposed performance enhancement and current research to support or negate these claims. Water-soluble vitamins, fat-soluble vitamins, macrominerals, and select microminerals are discussed in detail, and a comprehensive table reviewing all micronutrient recommendations for the athletes is provided. Practical applications for professionals working with athletes conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Dietetic Association, Dietitians of Canada, American College of Sports Medicine, Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.

    Article  CAS  Google Scholar 

  2. Institute of Medicine’s Food and Nutrition Board. Dietary reference intakes: recommended intakes for individuals. Washington, DC: National Academy Press; 2011. Available from http://www.iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/Nutrition/DRIs/5_Summary%20Table%20Tables%201-4.pdf.

    Google Scholar 

  3. Manore MM. Effect of physical activity on thiamine, riboflavin, and vitamin B-6 requirements. Am J Clin Nutr. 2000;72(2 Suppl):598S–606.

    CAS  PubMed  Google Scholar 

  4. Suzuki M, Itokawa Y. Effects of thiamine supplementation on exercise-induced fatigue. Metab Brain Dis. 1996;11(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  5. Bautista-Hernandez VM, Lopez-Ascencio R, Del Toro-Equihua M, Vasquez C. Effect of thiamine pyrophosphate on levels of serum lactate, maximum oxygen consumption and heart rate in athletes performing aerobic activity. J Int Med Res. 2008;36(6):1220–6.

    Article  CAS  PubMed  Google Scholar 

  6. Webster MJ, Scheett TP, Doyle MR, Branz M. The effect of a thiamin derivative on exercise performance. Eur J Appl Physiol Occup Physiol. 1997;75(6):520–4.

    Article  CAS  PubMed  Google Scholar 

  7. Doyle MR, Webster MJ, Erdmann LD. Allithiamine ingestion does not enhance isokinetic parameters of muscle performance. Int J Sport Nutr. 1997;7(1):39–47.

    CAS  PubMed  Google Scholar 

  8. Institute of Medicine’s Food and Nutrition Board. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 1998.

    Google Scholar 

  9. Marquart LF, Cohen EA, Short SH. Nutrition knowledge of athletes and their coaches and surveys of dietary intake. In: Wolinsky I, editor. Nutrition in exercise and sport. Boca Raton, FL: CRC; 1998.

    Google Scholar 

  10. Wierniuk A, Wlodarek D. Estimation of energy and nutritional intake of young men practicing aerobic sports. Roczniki Panstwowego Zakladu Higieny. 2013;64(2):143–8.

    CAS  PubMed  Google Scholar 

  11. Sato A, Shimoyama Y, Ishikawa T, Murayama N. Dietary thiamin and riboflavin intake and blood thiamin and riboflavin concentrations in college swimmers undergoing intensive training. Int J Sport Nutr Exerc Metab. 2011;21(3):195–204.

    CAS  PubMed  Google Scholar 

  12. Belko AZ. Vitamins and exercise—an update. Med Sci Sports Exerc. 1987;19(5 Suppl):S191–6.

    CAS  PubMed  Google Scholar 

  13. Suboticanec K, Stavljenic A, Schalch W, Buzina R. Effects of pyridoxine and riboflavin supplementation on physical fitness in young adolescents. Int J Vitam Nutr Res. 1990;60(1):81–8.

    CAS  PubMed  Google Scholar 

  14. Fogelholm M, Ruokonen I, Laakso JT, Vuorimaa T, Himberg JJ. Lack of association between indices of vitamin B1, B2, and B6 status and exercise-induced blood lactate in young adults. Int J Sport Nutr. 1993;3(2):165–76.

    CAS  PubMed  Google Scholar 

  15. Ma Y, Chen H, He X, Nie H, Hong Y, Sheng C, et al. NAD+ metabolism and NAD(+)-dependent enzymes: promising therapeutic targets for neurological diseases. Curr Drug Targets. 2012;13(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  16. Frankau IM. Acceleration of muscular effort by nicotinamide. Br Med J. 1943;2(4323):601–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hilsendager D, Karpovich PV. Ergogenic effect of glycine and niacin separately and in combination. Res Q. 1964;35(Suppl):389–92.

    PubMed  Google Scholar 

  18. Murray R, Bartoli WP, Eddy DE, Horn MK. Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc. 1995;27(7):1057–62.

    Article  CAS  PubMed  Google Scholar 

  19. Trost S, Wilcox A, Gillis D. The effect of substrate utilization, manipulated by nicotinic acid, on excess postexercise oxygen consumption. Int J Sports Med. 1997;18(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  20. Heath EM, Wilcox AR, Quinn CM. Effects of nicotinic acid on respiratory exchange ratio and substrate levels during exercise. Med Sci Sports Exerc. 1993;25(9):1018–23.

    CAS  PubMed  Google Scholar 

  21. Pernow B, Saltin B. Availability of substrates and capacity for prolonged heavy exercise in man. J Appl Physiol. 1971;31(3):416–22.

    CAS  PubMed  Google Scholar 

  22. Shils ME, Shike M, Ross AC, Caballeo B, Cousins RJ, editors. Modern nutrition in health and disease. 10th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  23. Webster MJ. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. Eur J Appl Physiol Occup Physiol. 1998;77(6):486–91.

    Article  CAS  PubMed  Google Scholar 

  24. Wall BT, Stephens FB, Marimuthu K, Constantin-Teodosiu D, Macdonald IA, Greenhaff PL. Acute pantothenic acid and cysteine supplementation does not affect muscle coenzyme A content, fuel selection, or exercise performance in healthy humans. J Appl Physiol (1985). 2012;112(2):272–8.

    Article  CAS  Google Scholar 

  25. Manore MM. Vitamin B6 and exercise. Int J Sport Nutr. 1994;4(2):89–103.

    CAS  PubMed  Google Scholar 

  26. Woolf K, Manore MM. B-vitamins and exercise: does exercise alter requirements? Int J Sport Nutr Exerc Metab. 2006;16(5):453–84.

    CAS  PubMed  Google Scholar 

  27. Virk RS, Dunton NJ, Young JC, Leklem JE. Effect of vitamin B-6 supplementation on fuels, catecholamines, and amino acids during exercise in men. Med Sci Sports Exerc. 1999;31(3):400–8.

    Article  CAS  PubMed  Google Scholar 

  28. Linderman J, Kirk L, Musselman J, Dolinar B, Fahey TD. The effects of sodium bicarbonate and pyridoxine-alpha-ketoglutarate on short-term maximal exercise capacity. J Sports Sci. 1992;10(3):243–53.

    Article  CAS  PubMed  Google Scholar 

  29. Molina-Lopez J, Molina JM, Chirosa LJ, Florea DI, Saez L, Planells E. Effect of folic acid supplementation on homocysteine concentration and association with training in handball players. J Int Soc Sports Nutr. 2013;10(1):10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Matter M, Stittfall T, Graves J, Myburgh K, Adams B, Jacobs P, et al. The effect of iron and folate therapy on maximal exercise performance in female marathon runners with iron and folate deficiency. Clin Sci. 1987;72(4):415–22.

    Article  CAS  PubMed  Google Scholar 

  31. Marti-Carvajal AJ, Sola I, Lathyris D, Karakitsiou DE, Simancas-Racines D. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2013;1, CD006612.

    PubMed  Google Scholar 

  32. Tin May T, Ma Win M, Khin Sann A, Mya-Tu M. The effect of vitamin B12 on physical performance capacity. Br J Nutr. 1978;40(2):269–73.

    Article  Google Scholar 

  33. Montoye HJ, Spata PJ, Pinckney V, Barron L. Effects of vitamin B12 supplementation on physical fitness and growth of young boys. J Appl Physiol. 1955;7(6):589–92.

    CAS  PubMed  Google Scholar 

  34. Braakhuis AJ. Effect of vitamin C supplements on physical performance. Curr Sports Med Rep. 2012;11(4):180–4.

    Article  PubMed  Google Scholar 

  35. Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26(6):459–516.

    Article  CAS  PubMed  Google Scholar 

  36. McLaren DS, Kraemer K. Retinoids and carotenoids in general medicine. World Rev Nutr Diet. 2012;103:137–47.

    Article  CAS  PubMed  Google Scholar 

  37. Lukaski HC. Vitamin and mineral status: effects on physical performance. Nutrition. 2004;20(7–8):632–44.

    Article  CAS  PubMed  Google Scholar 

  38. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S–6.

    CAS  PubMed  Google Scholar 

  39. Close GL, Russell J, Cobley JN, Owens DJ, Wilson G, Gregson W, et al. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci. 2013;31(4):344–53.

    Article  CAS  PubMed  Google Scholar 

  40. Hamilton B, Grantham J, Racinais S, Chalabi H. Vitamin D deficiency is endemic in Middle Eastern sportsmen. Public Health Nutr. 2010;13(10):1528–34.

    Article  PubMed  Google Scholar 

  41. Constantini NW, Arieli R, Chodick G, Dubnov-Raz G. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010;20(5):368–71.

    Article  PubMed  Google Scholar 

  42. Ogan D, Pritchett K. Vitamin D and the athlete: risks, recommendations, and benefits. Nutrients. 2013;5(6):1856–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Willis KS, Smith DT, Broughton KS, Larson-Meyer DE. Vitamin D status and biomarkers of inflammation in runners. Open Access J Sports Med. 2012;3:35–42.

    PubMed Central  PubMed  Google Scholar 

  44. Razavi MZ, Nazarali P, Hanachi P. The effect of an exercise programme and consumption of vitamin D on performance and respiratory indicators in patients with asthma. Sport Sci Health. 2011;6:89–92.

    Article  Google Scholar 

  45. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ. 2003;326(7387):469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    Article  CAS  PubMed  Google Scholar 

  47. Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab. 2009;54(4):291–300.

    Article  CAS  PubMed  Google Scholar 

  48. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20(3):187–92.

    Article  CAS  PubMed  Google Scholar 

  49. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int. 2009;20(2):315–22.

    Article  CAS  PubMed  Google Scholar 

  50. Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendano M, et al. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol. 2006;41(8):746–52.

    Article  CAS  PubMed  Google Scholar 

  51. Rejnmark L. Effects of vitamin d on muscle function and performance: a review of evidence from randomized controlled trials. Ther Adv Chronic Dis. 2011;2(1):25–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Rigotti A. Absorption, transport, and tissue delivery of vitamin E. Mol Aspects Med. 2007;28(5-6):423–36.

    Article  CAS  PubMed  Google Scholar 

  53. Institute of Medicine’s Food and Nutrition Board. Dietary reference intakes for vitamin c, vitamin E, selenium, and carotenoids. Washington, DC: National Academy Press; 2000.

    Google Scholar 

  54. McAnulty SR, McAnulty LS, Nieman DC, Morrow JD, Shooter LA, Holmes S, et al. Effect of alpha-tocopherol supplementation on plasma homocysteine and oxidative stress in highly trained athletes before and after exhaustive exercise. J Nutr Biochem. 2005;16(9):530–7.

    Article  CAS  PubMed  Google Scholar 

  55. Tsakiris S, Karikas GA, Parthimos T, Tsakiris T, Bakogiannis C, Schulpis KH. Alpha-tocopherol supplementation prevents the exercise-induced reduction of serum paraoxonase 1/arylesterase activities in healthy individuals. Eur J Clin Nutr. 2009;63(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  56. Cobley JN, Marrin K. Vitamin E supplementation does not alter physiological performance at fixed blood lactate concentrations in trained runners. J Sports Med Phys Fitness. 2012;52(1):63–70.

    CAS  PubMed  Google Scholar 

  57. Itoh H, Ohkuwa T, Yamazaki Y, Shimoda T, Wakayama A, Tamura S, et al. Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. Int J Sports Med. 2000;21(5):369–74.

    Article  CAS  PubMed  Google Scholar 

  58. Taghiyar M, Ghiasvand R, Askari G, Feizi A, Hariri M, Mashhadi NS, et al. The effect of vitamins C and e supplementation on muscle damage, performance, and body composition in athlete women: a clinical trial. Int J Prev Med. 2013;4 Suppl 1:S24–30.

    PubMed Central  PubMed  Google Scholar 

  59. Dawson B, Henry GJ, Goodman C, Gillam I, Beilby JR, Ching S, et al. Effect of vitamin C and E supplementation on biochemical and ultrastructural indices of muscle damage after a 21 km run. Int J Sports Med. 2002;23(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  60. Paulsen G, Cumming KT, Holden G, Hallen J, Ronnestad BR, Sveen O, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind randomized controlled trial. J Physiol. 2014;592(Pt 8):1887–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Institute of Medicine’s Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001.

    Google Scholar 

  62. Braam LA, Knapen MH, Geusens P, Brouns F, Vermeer C. Factors affecting bone loss in female endurance athletes: a two-year follow-up study. Am J Sports Med. 2003;31(6):889–95.

    PubMed  Google Scholar 

  63. Craciun AM, Wolf J, Knapen MH, Brouns F, Vermeer C. Improved bone metabolism in female elite athletes after vitamin K supplementation. Int J Sports Med. 1998;19(7):479–84.

    Article  CAS  PubMed  Google Scholar 

  64. Gahche J, Bailey R, Burt V, Hughes J, Yetley E, Dwyer J, et al. Dietary supplement use among U.S. adults has increased since NHANES III (1988–1994). NCHS Data Brief. 2011;61.

    Google Scholar 

  65. Lun V, Erdman KA, Fung TS, Reimer RA. Dietary supplementation practices in Canadian high-performance athletes. Int J Sport Nutr Exerc Metab. 2012;22(1):31–7.

    CAS  PubMed  Google Scholar 

  66. Fry AC, Bloomer RJ, Falvo MJ, Moore CA, Schilling BK, Weiss LW. Effect of a liquid multivitamin/mineral supplement on anaerobic exercise performance. Res Sports Med. 2006;14(1):53–64.

    Article  PubMed  Google Scholar 

  67. Knechtle B, Knechtle P, Schulze I, Kohler G. Vitamins, minerals and race performance in ultra-endurance runners—Deutschlandlauf 2006. Asia Pac J Clin Nutr. 2008;17(2):194–8.

    PubMed  Google Scholar 

  68. Institute of Medicine’s Food and Nutrition Board. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1997.

    Google Scholar 

  69. National Institutes of Health’s Office of Dietary Supplements. Calcium: Dietary supplement fact sheet 2013 [updated November 21, 2013]. Available from http://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/

  70. Matkovic V, Goel PK, Badenhop-Stevens NE, Landoll JD, Li B, Ilich JZ, et al. Calcium supplementation and bone mineral density in females from childhood to young adulthood: a randomized controlled trial. Am J Clin Nutr. 2005;81(1):175–88.

    CAS  PubMed  Google Scholar 

  71. Brunner RL, Cochrane B, Jackson RD, Larson J, Lewis C, Limacher M, et al. Calcium, vitamin D supplementation, and physical function in the Women’s Health Initiative. J Am Diet Assoc. 2008;108(9):1472–9.

    Article  PubMed  Google Scholar 

  72. Paschoal VC, Amancio OM. Nutritional status of Brazilian elite swimmers. Int J Sport Nutr Exerc Metab. 2004;14(1):81–94.

    PubMed  Google Scholar 

  73. Rico-Sanz J, Frontera WR, Mole PA, Rivera MA, Rivera-Brown A, Meredith CN. Dietary and performance assessment of elite soccer players during a period of intense training. Int J Sport Nutr. 1998;8(3):230–40.

    CAS  PubMed  Google Scholar 

  74. Papadopoulou SK, Papadopoulou SD, Gallos GK. Macro- and micro-nutrient intake of adolescent Greek female volleyball players. Int J Sport Nutr Exerc Metab. 2002;12(1):73–80.

    CAS  PubMed  Google Scholar 

  75. Martin BR, Davis S, Campbell WW, Weaver CM. Exercise and calcium supplementation: effects on calcium homeostasis in sportswomen. Med Sci Sports Exerc. 2007;39(9):1481–6.

    Article  CAS  PubMed  Google Scholar 

  76. Nemoseck T, Kern M. The effects of high-impact and resistance exercise on urinary calcium excretion. Int J Sport Nutr Exerc Metab. 2009;19(2):162–71.

    CAS  PubMed  Google Scholar 

  77. Buck CL, Wallman KE, Dawson B, Guelfi KJ. Sodium phosphate as an ergogenic aid. Sports Med. 2013;43(6):425–35.

    Article  PubMed  Google Scholar 

  78. Folland JP, Stern R, Brickley G. Sodium phosphate loading improves laboratory cycling time-trial performance in trained cyclists. J Sci Med Sport. 2008;11(5):464–8.

    Article  PubMed  Google Scholar 

  79. Brewer CP, Dawson B, Wallman KE, Guelfi KJ. Effect of repeated sodium phosphate loading on cycling time-trial performance and VO2peak. Int J Sport Nutr Exerc Metab. 2013;23(2):187–94.

    CAS  PubMed  Google Scholar 

  80. Kreider RB, Miller GW, Schenck D, Cortes CW, Miriel V, Somma CT, et al. Effects of phosphate loading on metabolic and myocardial responses to maximal and endurance exercise. Int J Sport Nutr. 1992;2(1):20–47.

    CAS  PubMed  Google Scholar 

  81. Rankinen T, Lyytikainen S, Vanninen E, Penttila I, Rauramaa R, Uusitupa M. Nutritional status of the Finnish elite ski jumpers. Med Sci Sports Exerc. 1998;30(11):1592–7.

    Article  CAS  PubMed  Google Scholar 

  82. Beals KA. Eating behaviors, nutritional status, and menstrual function in elite female adolescent volleyball players. J Am Diet Assoc. 2002;102(9):1293–6.

    Article  PubMed  Google Scholar 

  83. Nielsen FH, Lukaski HC. Update on the relationship between magnesium and exercise. Magnes Res. 2006;19(3):180–9.

    CAS  PubMed  Google Scholar 

  84. Laires MJ, Monteiro C. Exercise, magnesium and immune function. Magnes Res. 2008;21(2):92–6.

    CAS  PubMed  Google Scholar 

  85. Mooren FC, Golf SW, Volker K. Effect of magnesium on granulocyte function and on the exercise induced inflammatory response. Magnes Res. 2003;16(1):49–58.

    CAS  PubMed  Google Scholar 

  86. Lukaski HC, Nielsen FH. Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women. J Nutr. 2002;132(5):930–5.

    CAS  PubMed  Google Scholar 

  87. Kass LS, Skinner P, Poeira F. A pilot study on the effects of magnesium supplementation with high and low habitual dietary magnesium intake on resting and recovery from aerobic and resistance exercise and systolic blood pressure. J Sports Sci Med. 2013;12(1):144–50.

    PubMed Central  PubMed  Google Scholar 

  88. Mahan LK, Escott-Stump S, editors. Krause’s food and nutrition therapy. Philadelphia, PA: Saunders; 2007.

    Google Scholar 

  89. Juel C. Changes in interstitial K+ and pH during exercise: implications for blood flow regulation. Appl Physiol Nutr Metab. 2007;32(5):846–51.

    Article  CAS  PubMed  Google Scholar 

  90. Vissing J, Haller RG. Mechanisms of exertional fatigue in muscle glycogenoses. Neuromuscul Disord. 2012;22 Suppl 3:S168–71.

    Article  PubMed  Google Scholar 

  91. Goss F, Robertson R, Riechman S, Zoeller R, Dabayebeh ID, Moyna N, et al. Effect of potassium phosphate supplementation on perceptual and physiological responses to maximal graded exercise. Int J Sport Nutr Exerc Metab. 2001;11(1):53–62.

    CAS  PubMed  Google Scholar 

  92. Institute of Medicine’s Food and Nutrition Board. Dietary reference intakes: water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academy Press; 2004.

    Google Scholar 

  93. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.

    Article  PubMed  Google Scholar 

  94. Sharp RL. Role of sodium in fluid homeostasis with exercise. J Am Coll Nutr. 2006;25(3 Suppl):231S–9.

    Article  CAS  PubMed  Google Scholar 

  95. European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific Opinion on the substantiation of health claims related to carbohydrate-electrolyte solutions and reduction in rated perceived exertion/effort during exercise, enhancement of water absorption during exercise, and maintenance of endurance performance pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA J. 2011;9(6):29.

    Google Scholar 

  96. Sharp RL. Role of whole foods in promoting hydration after exercise in humans. J Am Coll Nutr. 2007;26(5 Suppl):592S–6.

    Article  PubMed  Google Scholar 

  97. Rosner MH. Exercise-associated hyponatremia. Semin Nephrol. 2009;29(3):271–81.

    Article  CAS  PubMed  Google Scholar 

  98. Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29 Suppl 1:S91–9.

    Article  PubMed  Google Scholar 

  99. Centers for Disease Control and Prevention. Iron deficiency—United States, 1999–2000. Morb Mortal Wkly Rep. 2002;51:897–9.

    Google Scholar 

  100. Suedekum NA, Dimeff RJ. Iron and the athlete. Curr Sports Med Rep. 2005;4(4):199–202.

    Article  PubMed  Google Scholar 

  101. Weight LM, Noakes TD, Labadarios D, Graves J, Jacobs P, Berman PA. Vitamin and mineral status of trained athletes including the effects of supplementation. Am J Clin Nutr. 1988;47(2):186–91.

    CAS  PubMed  Google Scholar 

  102. Sinclair LM, Hinton PS. Prevalence of iron deficiency with and without anemia in recreationally active men and women. J Am Diet Assoc. 2005;105(6):975–8.

    Article  CAS  PubMed  Google Scholar 

  103. Hinton PS, Giordano C, Brownlie T, Haas JD. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol (1985). 2000;88(3):1103–11.

    CAS  Google Scholar 

  104. DellaValle DM, Haas JD. Impact of iron depletion without anemia on performance in trained endurance athletes at the beginning of a training season: a study of female collegiate rowers. Int J Sport Nutr Exerc Metab. 2011;21(6):501–6.

    CAS  PubMed  Google Scholar 

  105. Dellavalle DM, Haas JD. Iron status is associated with endurance performance and training in female rowers. Med Sci Sports Exerc. 2012;44(8):1552–9.

    Article  CAS  PubMed  Google Scholar 

  106. DellaValle DM. Iron supplementation for female athletes: effects on iron status and performance outcomes. Curr Sports Med Rep. 2013;12(4):234–9.

    Article  PubMed  Google Scholar 

  107. Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  108. Stahler C. How often do Americans Eat vegetarian meals? And how many adults in the U.S. are vegetarian?: The Vegetarian Resource Group; 2012 [cited 2014 March 20, 2014]. Available from Four percent of U.S. adults were found to be vegetarian—see more at http://www.vrg.org/blog/2012/05/18/how-often-do-americans-eat-vegetarian-meals-and-how-many-adults-in-the-u-s-are-vegetarian/#sthash.EeuVDYey.dpuf

  109. How many vegetarians are there? Vegetarian J. 1997;XVI(5).

    Google Scholar 

  110. McEvoy CT, Temple N, Woodside JV. Vegetarian diets, low-meat diets and health: a review. Public Health Nutr. 2012;15(12):2287–94.

    Article  PubMed  Google Scholar 

  111. Veganism in a Nutshell: The Vegetarian Resource Group; 2014 [cited 2014 March 20, 2014]. Available from http://www.vrg.org/nutshell/vegan.htm

  112. Giolo De Carvalho F, Rosa FT, Marques Miguel Suen V, Freitas EC, Padovan GJ, Marchini JS. Evidence of zinc deficiency in competitive swimmers. Nutrition. 2012;28(11-12):1127–31.

    Article  CAS  PubMed  Google Scholar 

  113. Daneshvar P, Hariri M, Ghiasvand R, Askari G, Darvishi L, Iraj B, et al. Dietary behaviors and nutritional assessment of young male isfahani wrestlers. Int J Prev Med. 2013;4 Suppl 1:S48–52.

    PubMed Central  PubMed  Google Scholar 

  114. Micheletti A, Rossi R, Rufini S. Zinc status in athletes: relation to diet and exercise. Sports Med. 2001;31(8):577–82.

    Article  CAS  PubMed  Google Scholar 

  115. Van Loan MD, Sutherland B, Lowe NM, Turnlund JR, King JC. The effects of zinc depletion on peak force and total work of knee and shoulder extensor and flexor muscles. Int J Sport Nutr. 1999;9(2):125–35.

    PubMed  Google Scholar 

  116. Lukaski HC. Effects of exercise training on human copper and zinc nutriture. Adv Exp Med Biol. 1989;258:163–70.

    CAS  PubMed  Google Scholar 

  117. Kara E, Gunay M, Cicioglu I, Ozal M, Kilic M, Mogulkoc R, et al. Effect of zinc supplementation on antioxidant activity in young wrestlers. Biol Trace Elem Res. 2010;134(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  118. Kara E, Ozal M, Gunay M, Kilic M, Baltaci AK, Mogulkoc R. Effects of exercise and zinc supplementation on cytokine release in young wrestlers. Biol Trace Elem Res. 2011;143(3):1435–40.

    Article  CAS  PubMed  Google Scholar 

  119. Kilic M, Baltaci AK, Gunay M. Effect of zinc supplementation on hematological parameters in athletes. Biol Trace Elem Res. 2004;100(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  120. Lukaski HC, Bolonchuk WW, Klevay LM, Milne DB, Sandstead HH. Changes in plasma zinc content after exercise in men fed a low-zinc diet. Am J Physiol. 1984;247(1 Pt 1):E88–93.

    CAS  PubMed  Google Scholar 

  121. Fischer PW, Giroux A, L’Abbe MR. Effect of zinc supplementation on copper status in adult man. Am J Clin Nutr. 1984;40(4):743–6.

    CAS  PubMed  Google Scholar 

  122. Chandra RK. Excessive intake of zinc impairs immune responses. JAMA. 1984;252(11):1443–6.

    Article  CAS  PubMed  Google Scholar 

  123. Volek JS, Silvestre R, Kirwan JP, Sharman MJ, Judelson DA, Spiering BA, et al. Effects of chromium supplementation on glycogen synthesis after high-intensity exercise. Med Sci Sports Exerc. 2006;38(12):2102–9.

    Article  CAS  PubMed  Google Scholar 

  124. Campbell WW, Joseph LJ, Ostlund Jr RE, Anderson RA, Farrell PA, Evans WJ. Resistive training and chromium picolinate: effects on inositols and liver and kidney functions in older adults. Int J Sport Nutr Exerc Metab. 2004;14(4):430–42.

    CAS  PubMed  Google Scholar 

  125. Lukaski HC, Bolonchuk WW, Siders WA, Milne DB. Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. Am J Clin Nutr. 1996;63(6):954–65.

    CAS  PubMed  Google Scholar 

  126. Volpe SL, Huang HW, Larpadisorn K, Lesser II. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr. 2001;20(4):293–306.

    Article  CAS  PubMed  Google Scholar 

  127. Naghii MR. The significance of dietary boron, with particular reference to athletes. Nutr Health. 1999;13(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  128. Meacham SL, Taper LJ, Volpe SL. Effect of boron supplementation on blood and urinary calcium, magnesium, and phosphorus, and urinary boron in athletic and sedentary women. Am J Clin Nutr. 1995;61(2):341–5.

    CAS  PubMed  Google Scholar 

  129. Meacham SL, Taper LJ, Volpe SL. Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environ Health Perspect. 1994;102 Suppl 7:79–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica C. Serra PhD, RD, ATC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serra, M.C., Beavers, K.M. (2015). Essential and Nonessential Micronutrients and Sport. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics