Skip to main content

An Introduction to Large Deviations and Equilibrium Statistical Mechanics for Turbulent Flows

  • Chapter
  • First Online:
Stochastic Equations for Complex Systems

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

Two-dimensional turbulent flows, and to some extent, geophysical flows, are systems with a large number of degrees of freedom, which, albeit fluctuating, exhibit some degree of organization: coherent structures emerge spontaneously at large scales. In this short course, we show how the principles of equilibrium statistical mechanics apply to this problem and predict the condensation of energy at large scales and allow for computing the resulting coherent structures. We focus on the structure of the theory using the language of large deviation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold VI (1989) Mathematical methods of classical mechanics, 2nd edn. Springer, New York

    Book  Google Scholar 

  2. Batchelor G (1969) Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys Fluids 12(Suppl. II):233–239. doi:10.1063/1.1692443

    MATH  Google Scholar 

  3. Baxter RJ (1982) Exactly solved models in statistical mechanics. Academic Press, London

    MATH  Google Scholar 

  4. Berlin TH, Kac M (1952) The spherical model of a ferromagnet. Phys Rev 86:821. doi:10.1103/PhysRev.86.821

    Article  MATH  MathSciNet  Google Scholar 

  5. Biferale L, Musacchio S, Toschi F (2012) Inverse energy cascade in three-dimensional isotropic turbulence. Phys Rev Lett 108(16):164501. doi:10.1103/PhysRevLett.108.164501

  6. Boffetta G, Ecke RE (2012) Two-dimensional turbulence. Annu Rev Fluid Mech 44:427. doi:10.1146/annurev-fluid-120710-101240

    Article  MathSciNet  Google Scholar 

  7. Boucher C, Ellis RS, Turkington B (1999) Spatializing random measures: doubly indexed processes and the large deviation principle. Ann Probab 27:297–324

    Article  MATH  MathSciNet  Google Scholar 

  8. Boucher C, Ellis RS, Turkington B (2000) Derivation of maximum entropy principles in two-dimensional turbulence via large deviations. J Stat Phys 98(5–6):1235–1278

    Article  MATH  MathSciNet  Google Scholar 

  9. Bouchet F (2008) Simpler variational problems for statistical equilibria of the 2D Euler equation and other systems with long range interactions. Physica D 237:1976–1981. doi:10.1016/j.physd.2008.02.029

  10. Bouchet F, Corvellec M (2010) Invariant measures of the 2D Euler and Vlasov equations. J Stat Mech P08021. doi:10.1088/1742-5468/2010/08/P08021

  11. Bouchet F, Simonnet E (2009) Random changes of flow topology in two-dimensional and geophysical turbulence. Phys Rev Lett 102:094504. doi:10.1103/PhysRevLett.102.094504

  12. Bouchet F, Sommeria J (2002) Emergence of intense jets and Jupiter’s Great Red Spot as maximum-entropy structures. J Fluid Mech 464:165–207. doi:10.1017/S0022112002008789

    Article  MATH  MathSciNet  Google Scholar 

  13. Bouchet F, Venaille A (2012) Statistical mechanics of two-dimensional and geophysical flows. Phys Rep 515:227–295. doi:10.1016/j.physrep.2012.02.001

    Article  MathSciNet  Google Scholar 

  14. Campa A, Dauxois T, Ruffo S (2009) Statistical mechanics and dynamics of solvable models with long-range interactions. Phys Rep 480:57–159. doi:10.1016/j.physrep.2009.07.001

    Article  MathSciNet  Google Scholar 

  15. Charney JG (1971) Geostrophic turbulence. J Atmos Sci 28:1087–1094. doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2

  16. Chavanis PH (2003) Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence. Phys Rev E 68:036108

    Google Scholar 

  17. Chavanis PH (2006) Phase transitions in self-gravitating systems. Int J Mod Phys B 20:3113. doi:10.1142/S0217979206035400

    Article  MATH  Google Scholar 

  18. Chavanis PH, Dubrulle B (2006) Statistical mechanics of the shallow-water system with an a priori potential vorticity distribution. C R Phys 7:422–432. doi:10.1016/j.crhy.2006.01.007

    Article  Google Scholar 

  19. Chavanis PH, Sommeria J (1996) Classification of self-organized vortices in two-dimensional turbulence: the case of a bounded domain. J Fluid Mech 314:267–297. doi:10.1017/S0022112096000316

    Article  MATH  Google Scholar 

  20. Chavanis PH, Sommeria J (2002) Statistical mechanics of the shallow water system. Phys Rev E 65:026302. doi:10.1103/PhysRevE.65.026302

  21. Chertkov M, Connaughton C, Kolokolov I, Lebedev V (2007) Dynamics of energy condensation in two-dimensional turbulence. Phys Rev Lett 99(8):084501. doi:10.1103/PhysRevLett.99.084501

  22. Cipra BA (1987) An introduction to the Ising model. Am Math Mon 94(10):937–959

    Article  MathSciNet  Google Scholar 

  23. Dauxois T, Ruffo S, Arimondo E, Wilkens M (eds) (2002) Dynamics and thermodynamics of systems with long range interactions. Lecture notes in physics, vol 602. Springer, New York. doi:10.1007/3-540-45835-2

  24. DiBattista M, Majda AJ (2001) Equilibrium statistical predictions for baroclinic vortices: the role of angular momentum. Theor Comput Fluid Dyn 14(5):293–322

    Article  MATH  Google Scholar 

  25. Ellis RS (1985) Entropy, large deviations, and statistical mechanics. Springer, New York

    Book  MATH  Google Scholar 

  26. Ellis RS, Haven K, Turkington B (2000) Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J Stat Phys 101:999–1064. doi:10.1023/A:1026446225804

    Article  MATH  MathSciNet  Google Scholar 

  27. Ellis RS, Haven K, Turkington B (2002) Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Nonlinearity 15:239. doi:10.1088/0951-7715/15/2/302

    Article  MATH  MathSciNet  Google Scholar 

  28. Eyink G, Sreenivasan K (2006) Onsager and the theory of hydrodynamic turbulence. Rev Mod Phys 78:87–135. doi:10.1103/RevModPhys.78.87

    Article  MATH  MathSciNet  Google Scholar 

  29. Falkovich G (2011) Fluid mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Fjortoft R (1953) On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus 5:225–230

    Article  MathSciNet  Google Scholar 

  31. Frisch U (1995) Turbulence, the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Herbert C (2013) Additional invariants and statistical equilibria for the 2D Euler equations on a spherical domain. J Stat Phys 152:1084–1114. doi:10.1007/s10955-013-0809-6

    Article  MATH  MathSciNet  Google Scholar 

  33. Herbert C (2014) Nonlinear energy transfers and phase diagrams for geostrophically balanced rotating-stratified flows. Phys Rev E 89:033008. doi:10.1103/PhysRevE.89.033008

  34. Herbert C (2014) Restricted partition functions and inverse energy cascades in parity symmetry breaking flows. Phys Rev E 89:013010. doi:10.1103/PhysRevE.89.013010

  35. Herbert C, Dubrulle B, Chavanis PH, Paillard D (2012) Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere. Phys Rev E 85:056304. doi:10.1103/PhysRevE.85.056304

  36. Herbert C, Dubrulle B, Chavanis PH, Paillard D (2012) Statistical mechanics of quasi-geostrophic flows on a rotating sphere. J Stat Mech P05023. doi:10.1088/1742-5468/2012/05/P05023

  37. Herbert C, Pouquet A, Marino R (2014) Restricted equilibrium and the energy cascade in rotating and stratified flows. J Fluid Mech 758:374–406. doi:10.1017/jfm.2014.540

    Article  Google Scholar 

  38. Ising E (1925) Beitrag zur theorie des ferromagnetismus. Z Phys 31:253–258

    Article  Google Scholar 

  39. Joyce GS (1966) Spherical model with long-range ferromagnetic interactions. Phys Rev 146:349

    Article  Google Scholar 

  40. Kastner M, Schnetz O (2006) On the mean-field spherical model. J Stat Phys 122:1195–1214

    Article  MATH  MathSciNet  Google Scholar 

  41. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl Akad Nauk SSSR 30:301. doi:10.1098/rspa.1991.0075

    Google Scholar 

  42. Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10:1417–1423. doi:10.1063/1.1762301

    Article  Google Scholar 

  43. Kraichnan RH (1973) Helical turbulence and absolute equilibrium. J Fluid Mech 59:745–752

    Article  MATH  Google Scholar 

  44. Kraichnan RH, Montgomery DC (1980) Two-dimensional turbulence. Rep Prog Phys 43:547. doi:10.1088/0034-4885/43/5/001

    Article  MathSciNet  Google Scholar 

  45. Landau L, Lifchitz E (1971) Physique Théorique, Tome VI: Mécanique des fluides. Mir, Moscou

    Google Scholar 

  46. Lanford OE (1973) Entropy and equilibrium states in classical statistical mechanics. In: Lenard A (ed) Statistical mechanics and mathematical problems. Lecture notes in physics, vol 20. Springer, Berlin, pp 1–113

    Google Scholar 

  47. Lee TD (1952) On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q Appl Math 10:69–74

    MATH  Google Scholar 

  48. Leith C (1968) Diffusion approximation for two-dimensional turbulence. Phys Fluids 11:671–673. doi:10.1063/1.1691968

    Article  Google Scholar 

  49. Leprovost N, Dubrulle B, Chavanis PH (2006) Dynamics and thermodynamics of axisymmetric flows: theory. Phys Rev E 73:046308. doi:10.1103/PhysRevE.73.046308

  50. Lilly DK (1983) Stratified turbulence and the mesoscale variability of the atmosphere. J Atmos Sci 40:749–761

    Article  Google Scholar 

  51. Lim CC (2001) A long range spherical model and exact solutions of an energy enstrophy theory for two-dimensional turbulence. Phys Fluids 13:1961

    Article  MathSciNet  Google Scholar 

  52. Lim CC (2012) Phase transition to super-rotating atmospheres in a simple planetary model for a nonrotating massive planet: exact solution. Phys Rev E 88(6):066304. doi:10.1103/PhysRevE.86.066304

  53. Lucarini V, Blender R, Herbert C, Pascale S, Ragone F, Wouters J (2014) Mathematical and physical ideas for climate science. Rev Geophys 52:809–859. doi:10.1002/2013RG000446

    Article  Google Scholar 

  54. Majda AJ, Wang X (2006) Nonlinear dynamics and statistical theories for basic geophysical flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  55. McWilliams JC (1984) The emergence of isolated coherent vortices in turbulent flow. J Fluid Mech 146:21–43. doi:10.1017/S0022112084001750

    Article  MATH  Google Scholar 

  56. Merilees PE, Warn H (1975) On energy and enstrophy exchanges in two-dimensional non-divergent flow. J Fluid Mech 69(04):625–630

    Article  MATH  Google Scholar 

  57. Michel J, Robert R (1994) Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law. Commun Math Phys 159:195–215. doi:10.1007/BF02100491

    Article  MATH  MathSciNet  Google Scholar 

  58. Michel J, Robert R (1994) Statistical mechanical theory of the great red spot of Jupiter. J Stat Phys 77:645–666. doi:10.1007/BF02179454

    Article  MATH  Google Scholar 

  59. Miller J (1990) Statistical mechanics of Euler equations in two dimensions. Phys Rev Lett 65:2137–2140. doi:10.1103/PhysRevLett.65.2137

    Article  MATH  MathSciNet  Google Scholar 

  60. Miller J, Weichman PB, Cross MC (1992) Statistical mechanics, Euler’s equation, and Jupiter’s Red Spot. Phys Rev A 45:2328–2359. doi:10.1103/PhysRevA.45.2328

    Article  Google Scholar 

  61. Naso A, Chavanis PH, Dubrulle B (2011) Statistical mechanics of Fofonoff flows in an oceanic basin. Eur Phys J B 80:493–517. doi:10.1140/epjb/e2011-10440-8

    Article  Google Scholar 

  62. Naso A, Monchaux R, Chavanis PH, Dubrulle B (2010) Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined. Phys Rev E 81:066318. doi:10.1103/PhysRevE.81.066318

  63. Nazarenko SV (2010) Wave turbulence. Lecture notes in physics, vol 825. Springer

    Google Scholar 

  64. Olver PJ (2000) Applications of Lie groups to differential equations. Graduate texts in mathematics. Springer

    Google Scholar 

  65. Onsager L (1944) Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys Rev 65:117

    Article  MATH  MathSciNet  Google Scholar 

  66. Padmanabhan T (1990) Statistical mechanics of gravitating systems. Phys Rep 188:285–362. doi:10.1016/0370-1573(90)90051-3

    Article  MATH  MathSciNet  Google Scholar 

  67. Paret J, Tabeling P (1997) Experimental observation of the two-dimensional inverse energy cascade. Phys Rev Lett 79:4162–4165

    Article  Google Scholar 

  68. Penrose O, Lebowitz JL (1979) In: Montroll EW, Lebowitz JL (eds) Towards a rigorous molecular theory of metastability. Fluctuation phenomena, Chap. 5. North-Holland, Amsterdam, p 293

    Google Scholar 

  69. Potters M, Vaillant T, Bouchet F (2013) Sampling microcanonical measures of the 2D Euler equations through Creutz’s algorithm: a phase transition from disorder to order when energy is increased. J Stat Mech P02017. doi:10.1088/1742-5468/2013/02/P02017

  70. Pouquet A, Marino R (2013) Geophysical turbulence and the duality of the energy flow across scales. Phys Rev Lett 111:234,501. doi:10.1103/PhysRevLett.111.234501

    Article  Google Scholar 

  71. Qi W, Marston JB (2014) Hyperviscosity and statistical equilibria of Euler turbulence on the torus and the sphere. J Stat Mech P07020. doi:10.1088/1742-5468/2014/07/P07020

  72. Rhines PB (1979) Geostrophic turbulence. Annu Rev Fluid Mech 11:401–441

    Article  Google Scholar 

  73. Robert R (1989) Concentration et entropie pour les mesures d’Young. C R Acad Sci Paris, Sér I 309:757

    MATH  Google Scholar 

  74. Robert R (1990) Etats d’équilibre statistique pour l’écoulement bidimensionnel d’un fluide parfait. C R Acad Sci Paris, Série I 311:575

    MATH  Google Scholar 

  75. Robert R (1991) A maximum-entropy principle for two-dimensional perfect fluid dynamics. J Stat Phys 65:531–553. doi:10.1007/BF01053743

    Article  MATH  Google Scholar 

  76. Robert R (2000) On the statistical mechanics of 2D Euler equation. Commun Math Phys 212:245–256. doi:10.1007/s002200000210

    Article  MATH  Google Scholar 

  77. Robert R, Sommeria J (1991) Statistical equilibrium states for two-dimensional flows. J Fluid Mech 229:291–310. doi:10.1017/S0022112091003038

    Article  MATH  MathSciNet  Google Scholar 

  78. Robert R, Sommeria J (1992) Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys Rev Lett 69:2776–2779. doi:10.1103/PhysRevLett.69.2776

    Article  MATH  MathSciNet  Google Scholar 

  79. Rockafellar R (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  80. Ruelle D (1969) Statistical mechanics: rigorous results. Benjamin, Amsterdam

    MATH  Google Scholar 

  81. Ruelle D (1989) Chaotic evolution and strange attractors. Lezioni Lincee, Accademia Nazionale dei Lincei

    Book  MATH  Google Scholar 

  82. Rutgers MA (1998) Forced 2D turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades. Phys Rev Lett 81:2244–2247

    Article  Google Scholar 

  83. Salmon R (1998) Lectures on geophysical fluid dynamics. Oxford University Press, New York

    Google Scholar 

  84. Serre D (1984) Les invariants du premier ordre de l’équation d’Euler en dimension trois. Physica D 13:105–136. doi:10.1016/0167-2789(84)90273-2

  85. Smith LM, Yakhot V (1993) Bose condensation and small-scale structure generation in a random force driven 2D turbulence. Phys Rev Lett 71:352–355

    Article  Google Scholar 

  86. Sommeria J (2001) Course 8: two-dimensional turbulence. In: Lesieur M, Yaglom A, David F (eds) New trends in turbulence, Les Houches theoretical physics summer school, Chap. 8. Springer

    Google Scholar 

  87. Tabeling P (2002) Two-dimensional turbulence: a physicist approach. Phys Rep 362:1–62

    Article  MATH  MathSciNet  Google Scholar 

  88. Thalabard S, Dubrulle B, Bouchet F (2014) Statistical mechanics of the 3D axisymmetric Euler equations in a Taylor-Couette geometry. J Stat Mech P01005

    Google Scholar 

  89. Touchette H (2009) The large deviation approach to statistical mechanics. Phys Rep 478:1–69. doi:10.1016/j.physrep.2009.05.002

    Article  MathSciNet  Google Scholar 

  90. Touchette H, Ellis RS, Turkington B (2004) An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A 340:138–146. doi:10.1016/j.physa.2004.03.088

  91. Turkington B (1999) Statistical equilibrium measures and coherent states in two-dimensional turbulence. Comm Pure Appl Math 52:781–809. doi:10.1002/(SICI)1097-0312(199907)52:7<781:AID-CPA1>3.0.CO;2-C

    Article  MathSciNet  Google Scholar 

  92. Turkington B, Whitaker N (1996) Statistical equilibrium computations of coherent structures in turbulent shear layers. SIAM J Sci Comput 17:1414. doi:10.1137/S1064827593251708

    Article  MATH  MathSciNet  Google Scholar 

  93. Vallis GK (2006) Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  94. Venaille A (2012) Bottom-trapped currents as statistical equilibrium states above topographic anomalies. J Fluid Mech 699:500. doi:10.1017/jfm.2012.146

    Article  MATH  MathSciNet  Google Scholar 

  95. Venaille A, Bouchet F (2011) Oceanic rings and jets as statistical equilibrium states. J Phys Oceanogr 41:1860. doi:10.1175/2011JPO4583.1

    Article  Google Scholar 

  96. Venaille A, Vallis GK, Griffies SM (2012) The catalytic role of beta effect in barotropization processes. J Fluid Mech 709:490–515. doi:10.1017/jfm.2012.344

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Herbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herbert, C. (2015). An Introduction to Large Deviations and Equilibrium Statistical Mechanics for Turbulent Flows. In: Heinz, S., Bessaih, H. (eds) Stochastic Equations for Complex Systems. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18206-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18206-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18205-6

  • Online ISBN: 978-3-319-18206-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics