Skip to main content

Integrating Tissue Microenvironment with Scaffold Design to Promote Immune-Mediated Regeneration

  • Chapter
  • First Online:
Biomaterials in Regenerative Medicine and the Immune System

Abstract

The role of tissue and immune microenvironments has played a large role in fields such as tumor immunology. Recently, there has been interest in the role of the immune microenvironment in tissue engineering, more specifically how that environment can influence regeneration. Immune cells secrete a diverse repertoire of signaling molecules that can influence other immune cells as well as surrounding parenchyma. In regenerating tissues, these signaling molecules become very important in tissue growth and differentiation. In vitro studies include the role of a scaffold in macrophage polarization, a critical determinant in regenerative success. In vivo innate and adaptive immune responses to varying scaffolds give us insights into the correct scaffold to choose for the goal tissue to be regenerated. By combining the optimum regenerative immune environment with the innate polarization tendencies of scaffolds, we will be better able to cater specific scaffolds to their applications and improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leuk Bio. 2007;81:1–5.

    Article  Google Scholar 

  2. Matzinger P, Kamala T. Tissue-based class control: the other side of tolerance. Nat Rev Immunol. 2011;11:221–30.

    Article  Google Scholar 

  3. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    Article  Google Scholar 

  4. Weiner HL. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect. 2001;3:947–54.

    Article  Google Scholar 

  5. Clark AT, Islam S, King Y, Deighton J, Anagnostou K, Ewan PW. Successful oral tolerance induction in severe peanut allergy. Allergy. 2009;64:1218–20.

    Article  Google Scholar 

  6. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Ber EL, Erlandsen SL, Butcher EC. Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell. 1995;80:413–22.

    Article  Google Scholar 

  7. Rosa Bono M, Elgueta R, Sauma D, Pino K, Osorio F, Michea P, Fierro A, Rosemblatt M. The essential role of chemokines in the selective regulation of lymphocyte homing. Cytokine Growth Factor Rev. 2007;18:33–43.

    Article  Google Scholar 

  8. Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M. Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol. 2003;111:1185–99.

    Article  Google Scholar 

  9. Niederkorn JY. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol. 2006;7:354–9.

    Article  Google Scholar 

  10. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffman JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83.

    Article  Google Scholar 

  11. Medzhitov R, Preston-Hurlbert P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–97.

    Article  Google Scholar 

  12. Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT. Regulation of macrophage activation. Cell Mol Life Sci. 2003;60:2334–46.

    Article  Google Scholar 

  13. Roberts AB, Flanders KC, Heine UI, Jakowlew S, Kondaiah P, Kim SJ, Sporn, MB. Transforming growth factor-β multifunctional regulator of differentiation and development. Philos Trans R Soc Lond B, Biol Sci. 1990;327:145–54.

    Article  Google Scholar 

  14. Horsley V, Jansen KM, Mills ST, Pavlath GK. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell. 2003;113:483–94.

    Article  Google Scholar 

  15. Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci. 2013;110:9415–20.

    Article  Google Scholar 

  16. Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature. 2009;462:449–60.

    Article  Google Scholar 

  17. Leleux J, Roy K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater. 2013;2:72–94.

    Article  Google Scholar 

  18. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14:1835–42.

    Article  Google Scholar 

  19. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012;8:978–87.

    Article  Google Scholar 

  20. Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33:3792–802.

    Article  Google Scholar 

  21. Wynn T, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.

    Article  Google Scholar 

  22. Stefater III JA, Ren S, Lang RA, Duffield JS. Metchnikoff’s policemen: macrophages in development, homeostasis and regeneration. Cell Press: Trends Mol Med. 2011;17:743–52.

    Google Scholar 

  23. Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell. 2013;153:376–88.

    Article  Google Scholar 

  24. Goh SYP, Henderson NC, Heredia JE, Red Eagle A, Odegaard JI, Lehwald N, Sheppard D, Mukundan L, Locksley RM, Chawla A. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci. 2013;110:9914–9.

    Article  Google Scholar 

  25. Kou PM, Babensee JE. Validation of a high throughput methodology to assess the biomaterials on dendritic cell phenotype. Acta Biomater. 2010;6:2621–30.

    Article  Google Scholar 

  26. Artzi N, Olivia N, Puron C, Shitreet S, Artzi S, bon Ramos A, Groothuis A, Sahagian G, Edelman ER. In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat Mater. 2011;10:704–9.

    Article  Google Scholar 

  27. Hillel AT, Unterman S, Nahas Z, Reid B, Coburn JM, Axelman J, Chae JJ, Guo Q, Trow R, Thomas A, Hou Z, Lichtsteiner S, Sutton D, Matheson C, Walker P, David N, Mori S, Taube JM, Elisseeff JH. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci Transl Med. 2011;3:93ra67

    Google Scholar 

  28. Reid B, Gibson M, Singh A, Taube J, Furlong C, Murcia M, Elisseeff JH. PEG hydrogel degradation and the role of the surrounding tissue environment. J Tissue Eng Regen Med. 2013. http://dx.doi.org/10.1002/term.1688.

  29. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

    Article  Google Scholar 

  30. Wolf MT, Carruthers CA, Dearth CL, Crapo PM, Huber A, Burnsed OA, Londono R, Johnson SA, Daly KA, Stahl EC, Freund JM, Medberry CJ, Carey LE, Nieponice A, Amoroso NJ, Badylak SF. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. J Biomed Mater Res Part A. 2014;102:234–46.

    Article  Google Scholar 

  31. Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, Dearth CL, Badylak SF. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 2014;35:8585–95.

    Article  Google Scholar 

  32. Gilbert, TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    Google Scholar 

  33. Badylak, SF, Freytes DO, Gilbert, TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13.

    Article  Google Scholar 

  34. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res. 2005;73B:61–7.

    Article  Google Scholar 

  35. Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D’Amore A, Nagarkar SP, Velankar SS, Badylak SF. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 2012;33:7028–38.

    Article  Google Scholar 

  36. Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M, Turner NJ, Weber DJ, Simpson TW, Wyse A, Brown EH, Dziki JL, Fisher LE, Brown S, Badylak SF. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med. 2014;6:234ra58.

    Google Scholar 

  37. Zhang L, Zhang F, Weng Z, Brown BN, Yan H, Ma X, Vosler PS, Badylak SF, Dixon CE, Cui XT, Chen J. Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury. Tissue Eng Part A. 2013;19:1909–18.

    Article  Google Scholar 

  38. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci, Polymer Edition. 2008;19:635–52.

    Article  Google Scholar 

  39. Wu I, Nahas Z, Kimmerling KA, Rosson GD, Elisseeff JH. An injectable adipose matrix for soft tissue reconstruction. Plast Reconstr Surg. 2012;129:1247–57.

    Article  Google Scholar 

  40. Dunne LW, Huang Z, Meng W, Fan X, Zhange Q, An Z. Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials. 2014;35:4940–9.

    Article  Google Scholar 

  41. Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nat Immunol. 2007;8:11–13.

    Article  Google Scholar 

  42. Pechkovsky DV, Prasse A, Kollert F, Engel KMY, Dentler J, Luttmann W, Friedrich K, Müller-Quernheim J, Zissel G. Clin Immunol. 2010;137:89–101.

    Article  Google Scholar 

  43. Bryers JD, Giachelli CM, Ratner BD. Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol Bioeng. 2012;109:1898–911.

    Article  Google Scholar 

  44. Zakrzewski JL, van den Brink MRM, Hubbell JA. Overcoming immunological barriers in regenerative medicine. Nat Biotechnol. 2014;32:786–94.

    Article  Google Scholar 

  45. Ballotta V, Driessen-Mol A, Bouten CV, Baaijens FP. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials. 2014;35:4919–28.

    Article  Google Scholar 

  46. Beck JN, Singh A, Rothenberg AR, Elisseeff JH, Ewald AJ. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials. 2013;34:9486–95.

    Article  Google Scholar 

  47. Martino MM, Torelli F, Mochizuki M, Traub S, Ben-David D, Kuhn G, Müller R, Livne E, Eming SA, Hubbell JA. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med. 2011;3:100ra89.

    Google Scholar 

  48. Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater. 2014;13:988–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer H. Elisseeff Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sadtler, K., Housseau, F., Pardoll, D., Elisseeff, J. (2015). Integrating Tissue Microenvironment with Scaffold Design to Promote Immune-Mediated Regeneration. In: Santambrogio, L. (eds) Biomaterials in Regenerative Medicine and the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-18045-8_3

Download citation

Publish with us

Policies and ethics