Skip to main content

Generalized Information Criteria for the Best Logit Model

  • Conference paper
  • First Online:
Theory and Practice of Risk Assessment

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 136))

  • 1152 Accesses

Abstract

In this paper the \(\gamma \)–order Generalized Fisher’s entropy type Information measure (\(\gamma \)–GFI) is adopted as a criterion for the selection of the best Logit model. Thus the appropriate Relative Risk model can be evaluated through an algorithm. The case of the entropy power is also discussed as such a criterion. Analysis of a real breast cancer data set is conducted to demonstrate the proposed algorithm, while algorithm’s realizations, through MATLAB scripts, are cited in Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burnham, K.P., Anderson, D.R.: Kullback-Leibler information as a basis for strong inference in ecological studies. Wild Life Res. 28, 111–119 (2001)

    Article  Google Scholar 

  2. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  3. Dippon, J., Fritz, P., Kohler, M.: A statistical approach to case based reasoning, with application to breast cancer data. Comp. Stat. Data Anal. 40, 579–602 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Edler, L., Kitsos, C.P.: Recent Advances in Qualitative Methods in Cancer and Human Health Risk Assessment. Wiley, Chichester (2005)

    Book  Google Scholar 

  5. Feigelson, S.H., McKean-Cowdlin, R., Henderson, E.B.: Concerning the CYP17 MspA1 polymorphism and breast cancer risk: a meta-analysis. Mutagenesis 17, 445–446 (2002)

    Article  Google Scholar 

  6. Ferentinos, K., Papaioannou, T.: New parametric measures of information. Inf. Control 51, 193–208 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Finney, D.J.: Statistical Method in Biological Assay. Hafner, New York (1952)

    Google Scholar 

  8. Ford, I., Kitsos, C.P., Titterington, D.M.: Recent advances in nonlinear experimental design. Technometrics 31, 49–60 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huang, C.S., Chern, H.D., Chang, K.J., Cheng, C.W., Hsu, S.M., Shen, C.Y.: Breast risk cancer associated with genotype polymorphism of the estrogen-metabolizing CYP17, CYP1A1 and COMT—a multigenic study on cancer susceptibility. Cancer Res. 59, 4870–4875 (1999)

    Google Scholar 

  10. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kitsos, C.P., Toulias, T.L.: A min-max entropy algorithm for relative risk problems. Submitted

    Google Scholar 

  12. Kitsos, C.P., Toulias, T.L.: On the information matrix of the truncated cosinor model. Br. J. Math. Comput. Sci. 3(3) (2013)

    Google Scholar 

  13. Kitsos, C.P.: On the logit methods for Ca problems. In: Statistical Methods for Biomedical and Technical Systems, pp. 335–340. Limassol, Cyprus (2006)

    Google Scholar 

  14. Kitsos, C.P.: The Ca risk assessment as a bioassay. In: 55th Session of the International Statistical Institute. Sydney (2005)

    Google Scholar 

  15. Kitsos, C.P., Tavoularis, N.K.: Logarithmic Sobolev inequalities for information measures. IEEE Trans. Inf. Theory 55(6), 2554–2561 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kitsos, C.P.: Estimating the relative risk for breast cancer. Biom. Lett. 47(2), 133–146 (2010)

    Google Scholar 

  17. Kitsos, C.P., Toulias, T.L.: New information measures for the generalized normal distribution. Information 1, 13–27 (2010)

    Article  Google Scholar 

  18. Kitsos, C.P.: Invariant canonical form for the multiple logistic regression. Math. Eng. Sci. Aerosp. (MESA) 38(1), 267–275 (2011)

    Google Scholar 

  19. Kitsos, C.P.: Cancer Bioassays: A Statistical Approach. LAMBERT Academic Publishing, Saarbrucken (2012)

    Google Scholar 

  20. Kitsos, C.P., Toulias, T.L.: Bounds for the generalized entropy type information measure. J. Commun. Comput. 9(1), 56–64 (2012)

    MathSciNet  Google Scholar 

  21. Kitsos, C.P., Toulias, T.L., Trandafir, C.P.: On the multivariate \(\gamma \)-ordered normal distribution. Far East J. Theor. Stat. 38(1), 49–73 (2012)

    MATH  MathSciNet  Google Scholar 

  22. Soofi, E.S.: Principal information approaches. J. Am. Stat. Assoc. 95(452), 4352–4374 (2007)

    MathSciNet  Google Scholar 

  23. Zarikas, V., Gikas, V., Kitsos, C.P.: Evaluation of the optimal design “cosinor model” for enhancing the potential of robotic theodolite kinematic observations. Measurement 43(10), 1416–1424 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees who improved the language as well as the content of this paper, with their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos P. Kitsos .

Editor information

Editors and Affiliations

Appendices

Appendix 1

A study on the min–max behavior of the generalized entropy power \(\mathrm N_\delta (X_\gamma )\) applied on a \(\gamma \)-order normally distributed random variable is given below.

Fig. 3
figure 3

Graphs of \(\mathrm N_\delta (X_\gamma )\) along \(\delta \) for various \(\gamma \) values, where \(X_\gamma \sim {\fancyscript{N}}_\gamma (0,\sigma ^2)\) with \(\sigma = 0.8,1,1.5\)

Let \(X_\gamma \in {\fancyscript{N}}^p_\gamma (\mu ,{\Sigma })\). For \(\delta > 1\), numerically can be verified (see Fig. 1) that,

$$ \underset{\gamma > 1}{\max }\mathrm N_\delta (X_\gamma ) = \underset{\gamma < 0}{\min }\mathrm N_\delta (X_\gamma ) = \mathrm N_\delta (X_{+\infty }), $$
$$ \underset{\delta \ge 1}{\min \;}\underset{\gamma > 1}{\max }\mathrm N_\delta (X_\gamma ) = \mathrm N_{+\infty }(X_{+\infty }) = 1,\;\;\text {when}\;\; |\det {\Sigma }| = 1, $$
$$ \underset{\delta \ge 1}{\max \;}\underset{\gamma < 0}{\min }\mathrm N_\delta (X_\gamma ) = \mathrm N_1(X_{+\infty }) = e|\det {\Sigma }|^\frac{1}{2p}. $$

The dual case hold for \(\delta < 0\) (\(\max /\min \) reversion). Moreover, for \(|\det {\Sigma }| \le 1\), see also Fig. 3, the following holds:

$$ \underset{\delta \ge 1}{\max }\mathrm N_\delta (X_\gamma ) = \mathrm N_1(X_\gamma ),\quad \gamma > 1, $$
$$ \underset{\gamma \ge 1}{\min \;}\underset{\delta \ge 1}{\max }\mathrm N_\delta (X_\gamma ) = \mathrm N_1(X_1) = |\det {\Sigma }|^\frac{1}{2p}, $$

For \(|\det {\Sigma }| \ge 1\), Fig. 3, we have

$$ \underset{\gamma > 1}{\max }\left\{ \underset{\delta \ge 0}{\min }\mathrm N_\delta (X_\gamma ) \ne 0\right\} = \underset{\delta > 1}{\min }\mathrm N_\delta (X_{+\infty }). $$

Appendix 2

A study on the min–max behavior of \(\mathrm N_\delta (X_{j;\gamma })\) and \(\mathrm J_\delta (X_{j;\gamma })\) applied on the \(\gamma \)-order normally distributed risk variables \(X_{j,\gamma }\), \(j = 1,2,\dots ,5\) is given below.

Fig. 4
figure 4

Graphs of \(\mathrm N_\delta (X_{2;\gamma })\) along \(\gamma \) for various \(\delta \) values, where \(X_{2;\gamma }\sim {\fancyscript{N}}_\gamma (\mu _2,\sigma ^2_{2;\gamma })\)

Figure 4, verifies that

$$ \mathop {\max }_{\gamma > 1}\left\{ \mathrm N_\delta (X_{j;\gamma })\right\} = \mathrm N_\delta (X_{j;2}) = \mathrm N_\delta (X_j),\quad \delta > 1, $$

i.e. the \(\max _{\gamma > 1}\mathrm N_\delta (X_{j;\gamma })\) corresponds, for \(\delta > 1\), to the usual Normal distribution, and therefore,

$$ \mathop {\min }_{\delta > 1}\mathop {\max }_{\gamma > 0}\left\{ \mathrm N_\delta (X_{j;\gamma })\right\} = m_j, $$

with \(m_j\) as in Table 3. Moreover, the \(\max _{\gamma > 1}\mathrm N_\delta (X_{j;\gamma })\) for \(\delta < 0\) corresponds to the usual Laplace distribution, i.e.

$$ \mathop {\max }_{\gamma > 1}\left\{ \mathrm N_\delta (X_{j;\gamma })\right\} = \mathrm N_\delta (X_{j;-\infty }),\quad \delta < 0. $$

while for \(\delta > 1\), through (23) with \(\frac{\gamma -1}{\gamma }\rightarrow 1\), is given by

$$ \mathop {\max }_{\gamma <0}\left\{ \mathrm N_\delta (X_{j;\gamma })\right\} =\mathrm N_\delta (X_{j;-\infty }) = e(\tfrac{\delta -1}{\delta })^{\delta -1} {\Gamma }^{-\delta }\left( \tfrac{\delta -1}{\delta }+1\right) \sigma _j/\sqrt{2},\quad \delta > 1,\;\;\text {i.e.} $$
$$ m^*_j := \mathop {\min }_{\delta > 1}\mathop {\max }_{\gamma < 0}\left\{ \mathrm N_\delta (X_{j;\gamma })\right\} = \mathrm N_1(X_{j;-\infty }) = \tfrac{1}{2}e\sqrt{2}\sigma _j, $$

with \(m^*_j\) as in Table 6 (compared with Table 3).

Table 6 Evaluations of \(m^*_j\) and \(m^{**}_j\), \(j = 2,3,4,5\)

For the \(\delta \)–GFI, we have that \(\mathrm J_\delta (X_\gamma )\) is a monotone function of \(\delta \ge \gamma (1.4628-1)+1\) for all \(X_\gamma \sim {\fancyscript{N}}_{\gamma \ge 1}(\mu ,1)\), see proof of Proposition 3.1 in [20]. Thus \(\mathrm J_\delta (X_\gamma )\) is an increasing function of \(\delta \ge 2\). Therefore,

$$\mathop {\min }_{\delta \ge 2}\mathrm J_\delta (X_\gamma ) = \mathrm J_2(X_\gamma ) = \mathrm J(X_\gamma ),\quad \gamma \ge 1. $$

The above relation holds for \(X_\gamma \sim {\fancyscript{N}}_{\gamma \ge 1}(\mu ,\sigma ^2)\), due to (16), assuming \(\sigma \ge 1\), and hence

$$ \mathop {\min }_{\delta \ge 2}\mathrm J_\delta (X_{j;\gamma }) = (\tfrac{\gamma -1}{\gamma })^{2/\gamma }\frac{{\Gamma }(\frac{3\gamma -1}{\gamma })}{{\Gamma }(\frac{\gamma -1}{\gamma })}\sigma ^{-2}_{j;\gamma }, \quad \gamma \ge 1. $$

Through (23) we have

$$ \mathop {\min }_{\delta \ge 2}\mathrm J_\delta (X_{j;\gamma }) = (\tfrac{\gamma -1}{\gamma })^{2\frac{2-\gamma }{\gamma }}\frac{{\Gamma }(3\frac{\gamma -1}{\gamma }){\Gamma }(\frac{3\gamma -1}{\gamma })}{{\Gamma }^2(\frac{\gamma -1}{\gamma })}\sigma ^{-2}_j,\quad \gamma \ge 1. $$

Numerically we can derive that (see Table 6)

$$ m_j^{**} := \mathop {\max }_{\gamma \ge 1}\mathop {\min }_{\delta \ge 2}\mathrm J(X_{j;\gamma }) = \mathrm J_\delta (X_{j;+\infty }). $$

Appendix 3

Appendix 3.1. MATLAB script for the evaluations of Table 3. The 5th column of the Data matrix correspond to the data for Age, COMT, CYP17, Menarche and Menopause risk variables, while the b0 and b1 arrays contain the coefficients from Table 2.

figure a
figure b

Appendix 3.2. MATLAB script for the evaluations of Table 4. Array s2 and variable k are defined in the previous script.

figure c

Appendix 3.3. MATLAB script for the evaluations of Table 5. Array V and MATLAB function Var are defined in the previous script.

figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kitsos, C.P., Toulias, T.L. (2015). Generalized Information Criteria for the Best Logit Model. In: Kitsos, C., Oliveira, T., Rigas, A., Gulati, S. (eds) Theory and Practice of Risk Assessment. Springer Proceedings in Mathematics & Statistics, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-319-18029-8_1

Download citation

Publish with us

Policies and ethics