Skip to main content

Rodenticides

  • Reference work entry
  • First Online:
Critical Care Toxicology

Abstract

Rodenticides are utilized worldwide. Specific types of rodenticide exposures critical care physicians commonly encounter vary regionally. In the USA, before 1976, anticoagulant rodenticides contained warfarin. However, rodents developed resistance to warfarin, leading to the manufacture of more potent, longer lasting superwarfarins, also known as second-generation anticoagulants or long-acting anticoagulant rodenticides (LAAR). In the USA, the most common rodenticides involved in human poisonings are anticoagulant agents, specifically superwarfarin products. Annual reports of the American Association of Poison Control Centers (AAPCC) Toxic Exposure Surveillance System (TESS) reported ten deaths involving LAAR from 2002 to 2013. Superwarfarins are commonly present in homes throughout the United States, and exposure to them occurs frequently in the pediatric population [1–3]. The amount ingested is usually limited, and coagulopathy from single pediatric ingestions is rare [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 338.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingels M, Lai C, Tai W, et al. A prospective study of acute, unintentional, pediatric superwarfarin ingestions managed without decontamination. Ann Emerg Med. 2002;40:73–8.

    Article  PubMed  Google Scholar 

  2. King N, Tran MH. Long-acting anticoagulant rodenticide (superwarfarin) poisoning: a review of its historical development, epidemiology, and clinical management. Transfus Med Rev. 2015. doi:10.1016/j.tmrv.2015.06.002. pii: S0887-7963(15)00072-3. [Epub ahead of print] Review. PMID: 26239439.

    PubMed  Google Scholar 

  3. Caravati EM, Erdman AR, Scharman EJ, Woolf AD, et al. Long-acting anticoagulant rodenticide poisoning: an evidence based consensus guideline for out-of-hospital management. Clin Toxicol. 2007;45(1):1–22.

    Article  CAS  Google Scholar 

  4. Smolinske SC, Scherger DL, Kearns PS, et al. Superwarfarin poisoning in children: a prospective study. Pediatrics. 1989;84:490–4.

    CAS  PubMed  Google Scholar 

  5. http://www.epa.gov/rodenticides/canceling-some-d-con-mouse-and-rat-control-products

  6. Jayaraman KS. Death pills from pesticide. Nature. 1991;353:377.

    Article  CAS  PubMed  Google Scholar 

  7. Agrawal VK, Bansal A, Singh RK, et al. Aluminum phosphide poisoning: possible role of supportive measures in the absence of specific antidote. Indian J Crit Care Med. 2015;19(2):109–12. doi:10.4103/0972-5229.151019. PMID: 25722553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nocera A, Levitin HW, Hilton JMN. Dangerous bodies: a case of fatal aluminum phosphide poisoning. Med J Aust. 2000;173:133–5.

    CAS  PubMed  Google Scholar 

  9. Garry VF, Griffith J, Danzl TJ, et al. Human genotoxicity: pesticide applicators and phosphine. Science. 1989;246:251–5.

    Article  CAS  PubMed  Google Scholar 

  10. Zaebst DD, Blade LM, Burroughs GE, et al. Phosphine exposures in grain elevators during fumigation with aluminum phosphide. Appl Ind Hyg. 1988;3:146–54.

    Article  CAS  Google Scholar 

  11. Lodde B, Lucas D, Lefort JM, et al. Acute phosphine poisoning on board a bulk carrier: analysis of factors leading to a fatal case. J Occup Med Toxicol. 2015;10(10):1–7.

    Google Scholar 

  12. Lewi Z, Warsaw DM, Bar-Khayim Y. Food poisoning from barium carbonate. Lancet. 1964;2:342–3.

    Article  CAS  PubMed  Google Scholar 

  13. Diengott D, Rozsa O, Levy N, et al. Hypokalaemia in barium poisoning. Lancet. 1964;2:343–4.

    Article  CAS  PubMed  Google Scholar 

  14. Morton W. Poisoning by barium carbonate. Lancet. 1945;248:738–9.

    Article  Google Scholar 

  15. Deng JF, Jan IS, Cheng H. The essential role of a poison center in handling an outbreak of barium carbonate poisoning. Vet Hum Toxicol. 1991;33:173–5.

    CAS  PubMed  Google Scholar 

  16. Ghose A, Abu Sayeed A, Hossain A, et al. Mass barium carbonate poisoning with fatal outcome, lessons learned: a case series. Cases J. 2009;1(2):1–4.

    Google Scholar 

  17. Brewer E, Haggerty RJ. Toxic hazards: rat poison: III. Thallium, strychnine, and ANTU. N Engl J Med. 1958;259:1038–40.

    Article  CAS  PubMed  Google Scholar 

  18. Watson WA, et al. 2002 annual report of the American Association of Poison Control Centers Toxic Exposures Surveillance System. Am J Emerg Med. 2003;21:353–421.

    Article  PubMed  Google Scholar 

  19. Watson WA, et al. 2003 annual report of the American Association of Poison Control Centers Toxic Exposures Surveillance System. Am J Emerg Med. 2004;22:335–404.

    Article  PubMed  Google Scholar 

  20. Watson WA, et al. 2004 annual report of the American Association of Poison Control Centers Toxic Exposures Surveillance System. Am J Emerg Med. 2005;23:589–666.

    Article  PubMed  Google Scholar 

  21. Lai MW, et al. 2005 annual report of the American Association of Poison Control Centers’ National Poisoning and Exposure Database. Clin Toxicol. 2006;44(6–7):803–932.

    Article  CAS  Google Scholar 

  22. Bronstein AC, et al. 2006 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS). Clin Toxicol. 2007;45:815–917.

    Article  Google Scholar 

  23. Bronstein AC, et al. 2007 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 25th annual report. Clin Toxicol. 2008;46:927–1057.

    Article  Google Scholar 

  24. Bronstein AC, et al. 2008 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 26th annual report. Clin Toxicol. 2009;47:911–1084.

    Article  Google Scholar 

  25. Bronstein AC, et al. 2009 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 27th annual report. Clin Toxicol. 2010;48:979–1178.

    Article  Google Scholar 

  26. Bronstein AC, et al. 2010 annual report of the American Association of Poison Control Centers’ National Poison Data Sytem (NPDS): 28th annual report. Clin Toxicol. 2011;49:910–41.

    Article  Google Scholar 

  27. Bronstein AC, et al. 2011 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 29th annual report. Clin Toxicol. 2012;50:911–1164.

    Article  Google Scholar 

  28. Mowry JB, et al. 2012 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 30th annual report. Clin Toxicol. 2013;51:949–1229.

    Article  CAS  Google Scholar 

  29. Mowry JB, et al. 2013 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDs): 31st annual report. Clin Toxicol. 2014;52:1032–283.

    Article  Google Scholar 

  30. Spencer EY. Guide to the chemicals used in crop protection, Publication, vol. 1093. 7th ed. Ottawa: Research Institute, Agriculture Canada; 1982. p. 32, Information Canada.

    Google Scholar 

  31. Shankle R, Keane JR. Acute paralysis from inhaled barium carbonate. Arch Neurol. 1988;45:579–80.

    Article  CAS  PubMed  Google Scholar 

  32. HSDBPubChem 9/1/15. http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~ugWg5V:1

  33. McTaggart DR. Poisoning due to sodium fluoroacetate (“1080”). Med J Aust. 1970;2:641–2.

    CAS  PubMed  Google Scholar 

  34. Chenoweth M. Monofluoroacetic acid and related compounds. Pharmacol Rev. 1949;1:383–424.

    CAS  PubMed  Google Scholar 

  35. Peters RA, Spencer H, Bidstrup PL. Subacute fluoroacetate poisoning. J Occup Med. 1981;23:112–3.

    Article  CAS  PubMed  Google Scholar 

  36. Centers for Disease Control and Prevention (CDC). Poisoning by an illegally imported Chinese rodenticide containing tetramethylenedisulfotetramine-New York City, 2002. MMWR Morb Mortal Wkly Rpt. 2003;52(10):199–201.

    Google Scholar 

  37. Ross GS, Zacharski LR, Robert D, et al. An acquired hemorrhagic disorder from long-acting rodenticide ingestion. Arch Intern Med. 1992;152:410–2.

    Article  CAS  PubMed  Google Scholar 

  38. Breckenridge AM, Cholerton S, Hart JAD, et al. A study of the relationship between the pharmacokinetics and the pharmacodynamics of the 4-hydroxycoumarin anticoagulants warfarin, difenacoum and brodifacoum in the rabbit. Br J Pharmacol. 1985;84:81–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones EC, Growe GH, Naiman SC. Prolonged anticoagulation in rat poisoning. JAMA. 1984;252:3005–7.

    Article  CAS  PubMed  Google Scholar 

  40. Watts RG, Castleberry RP, Sadowski JA. Accidental poisoning with a superwarfarin compound (brodifacoum) in a child. Pediatrics. 1990;86:883–7.

    CAS  PubMed  Google Scholar 

  41. Weitzel JN, Sadowski JA, Furie BC, et al. Surreptitious ingestion of a long-acting vitamin K antagonist/rodenticide, brodifacoum: clinical and metabolic studies of three cases. Blood. 1990;76:2555–9.

    CAS  PubMed  Google Scholar 

  42. Lee PW, Arnau T, Neal RA. Metabolism of alpha-naphthylthiourea by rat liver and rat lung microsomes. Toxicol Appl Pharmacol. 1980;53:164–73.

    Article  CAS  PubMed  Google Scholar 

  43. Boyd MR, Neal RA. Studies on the mechanism of toxicity and of development of tolerance to the pulmonary toxin, alpha-naphthylthiourea (ANTU). Drug Metab Dispos. 1976;4:314–22.

    CAS  PubMed  Google Scholar 

  44. Schott GD, McArdle B. Barium-induced skeletal muscle paralysis in the rat, and its relationship to human familial periodic paralysis. J Neurol Neurosurg Psychiatry. 1974;37:32–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson CH, Van Tassell VJ. Acute barium poisoning with respiratory failure and rhabdomyolysis. Ann Emerg Med. 1991;20:126–30.

    Google Scholar 

  46. Roza O, Berman LB. The pathophysiology of barium: hypokalemic and cardiovascular effects. J Pharmacol Exp Ther. 1971;177:433–9.

    CAS  PubMed  Google Scholar 

  47. Chugh SN, Arora V, Sharma A, et al. Free radical scavengers and lipid peroxidation in acute aluminum phosphide poisoning. Indian J Med Res. 1996;104:190–3.

    CAS  PubMed  Google Scholar 

  48. Rodenberg HD, Chang CC, Watson WA. Zinc phosphide ingestion: a case report and review. Vet Hum Toxicol. 1989;31:559–62.

    CAS  PubMed  Google Scholar 

  49. Gunnarsson R, Berne C, Hellerstrom C. Cytotoxic effects of streptozotocin and N-nitrosomethylurea on pancreatic B cells with special regard to the role of nicotinamide-adenine dinucleotide. Biochem J. 1974;140:487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stauffacher W, Burr I, Gutzeit A, et al. Streptozotocin diabetes: time course of irreversible B-cell damage: further observations on prevention by nicotinamide. PSEBM. 1970;133:194–200.

    CAS  Google Scholar 

  51. Kenney RM, Michaels IAL, Flomenbaum NE, et al. Poisoning with N-3-pyridylmethyl-N′-p-nitrophenylurea. Arch Pathol Lab Med. 1981;105:367–70.

    CAS  PubMed  Google Scholar 

  52. Pont A, Rubino JM, Bishop D, et al. Diabetes mellitus and neuropathy following Vacor ingestion in man. Arch Intern Med. 1979;139:185–7.

    Article  CAS  PubMed  Google Scholar 

  53. Prosser PR, Karam JH. Diabetes mellitus following rodenticide ingestion in man. JAMA. 1978;239:1148–50.

    Article  CAS  PubMed  Google Scholar 

  54. Watson D, Griffin J. Vacor neuropathy: Ultrastructural and axonal transport studies. J Neuropathol Exp Neurol. 1987;46:96–108.

    Article  CAS  PubMed  Google Scholar 

  55. Roy A, Taitelman U, Bursztein S. Evaluation of the role of ionized calcium in sodium fluoroacetate (“1080”) poisoning. Toxicol Appl Pharmacol. 1980;56:216–20.

    Article  Google Scholar 

  56. Chenoweth M, Kandel A, Johnson LB, et al. Factors influencing fluoroacetate poisoning – practical treatment with glyceryl monoacetate. J Pharmacol Exp Ther. 1951;102:31–49.

    CAS  PubMed  Google Scholar 

  57. Aprison MH, Lipkowitz KB, Simon JR. Identification of a glycine-like fragment on the strychnine molecule. J Neurosci Res. 1987;17:209–13.

    Article  CAS  PubMed  Google Scholar 

  58. Davidoff RA, Aprison MH, Werman R. The effects of strychnine on the inhibition of interneurons by glycine and gamma-aminobutyric acid. Int J Neuropharmacol. 1969;8:191–4.

    Article  CAS  PubMed  Google Scholar 

  59. Curtis DR, Hosli L, Johnston GAR, et al. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp Brain Res. 1968;5:235–58.

    Article  CAS  PubMed  Google Scholar 

  60. Young AB, Zukin SR, Snyder SH. Interaction of benzodiazepines with central nervous glycine receptors: Possible mechanism of action. Proc Natl Acad Sci. 1974;71:2246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Richter JJ. Current theories about the mechanisms of benzodiazepines and neuroleptic drugs. Anesthesiology. 1981;54:66–72.

    Article  CAS  PubMed  Google Scholar 

  62. Smith BA. Strychnine poisoning. J Emerg Med. 1990;8:321–5.

    Article  CAS  PubMed  Google Scholar 

  63. Teitelbaum DT, Ott JE. Acute strychnine poisoning. J Toxicol Clin Toxicol. 1970;3:267–73.

    Article  CAS  Google Scholar 

  64. Basehore LM, Mowry JM. Death following ingestion of superwarfarin rodenticide: a case report. Vet Hum Toxicol. 1987;29:459.

    Google Scholar 

  65. Helmuth RA, McCloskey DW, Doedens DJ, et al. Fatal ingestion of a brodifacoum-containing rodenticide. Lab Med. 1989;20:25–7.

    Article  Google Scholar 

  66. Kruse JA, Carlson RW. Fatal rodenticide poisoning with brodifacoum. Ann Emerg Med. 1992;21:331–6.

    Article  CAS  PubMed  Google Scholar 

  67. Swigar ME, Clemow LP, Saidi P, et al. “Superwarfarin” ingestion: A new program in covert anticoagulant overdose. Gen Hosp Psychiatry. 1990;12:309–12.

    Article  CAS  PubMed  Google Scholar 

  68. Routh CR, Triplett DA, Murphy MJ, et al. Superwarfarin ingestion and detection. Am J Hematol. 1991;36:50–4.

    Article  CAS  PubMed  Google Scholar 

  69. Cimbal G. Alpha-napthylthioharnstoff-vergiftung beim menschen. Arch Toxikol. 1952;14:2–6.

    Article  Google Scholar 

  70. Schorn TF, Olbricht C, Schuler A, et al. Barium carbonate intoxication. Intensive Care Med. 1991;17:60–2.

    Article  CAS  PubMed  Google Scholar 

  71. Phelan DM. Is hypokalaemia the cause of paralysis in barium poisoning? BMJ. 1984;289:882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmad SH, Fakir S, Gupta S, et al. Celphos poisoning. Indian Pediatr. 1991;28:300–1.

    CAS  PubMed  Google Scholar 

  73. Chopra JS, Kalra OP, Malk R, et al. Aluminum phosphide poisoning: a prospective study of 16 cases in one year. Postgrad Med J. 1986;62:1113–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Banjaj R, Wasir HS. Epidemic aluminum phosphide poisoning in northern India. Lancet. 1988;1:820–1.

    Article  CAS  PubMed  Google Scholar 

  75. Misra UK, Tripathi AK, Pandey R, et al. Acute phosphine poisoning following ingestion of aluminum phosphide. Hum Toxicol. 1988;7:343–5.

    Article  CAS  PubMed  Google Scholar 

  76. Singh RB, Singh RG, Singh U. Hypermagnesemia following aluminum phosphide poisoning. Int J Clin Pharmacol Ther Toxicol. 1991;29:82–5.

    CAS  PubMed  Google Scholar 

  77. Andersen TS, Holm JW, Andersen TS. Poisoning with aluminum phosphide used as a poison against moles [Danish]. Ugeskr Laeger. 1996;158:5308–9.

    CAS  PubMed  Google Scholar 

  78. Duenas A, Perez-Castrillon JL, Cobos MA, et al. Treatment of the cardiovascular manifestations of phosphine with trimetazidine, a new antiischemic drug [Letter]. Am J Emerg Med. 1999;17:219–20.

    Article  CAS  PubMed  Google Scholar 

  79. http://www.cbc.ca/news/canada/montreal/phosphine-gas-likely-cause-of-thailand-deaths-of-quebec-sisters-coroner-1.2977667

  80. http://www.cbc.ca/news/canada/edmonton/phosphine-pesticide-used-to-kill-bedbugs-causes-fort-mcmurray-baby-s-death-1.2969189

  81. Miller LV, Stokes JD, Silpitat C. Diabetes mellitus and autonomic dysfunction after Vacor rodenticide ingestion. Diabetes Care. 1978;1:73–6.

    Article  CAS  PubMed  Google Scholar 

  82. Johnson D, Kubic P, Levitt C. Accidental ingestion of Vacor rodenticide. Am J Dis Child. 1980;134:161–4.

    Article  CAS  PubMed  Google Scholar 

  83. Gallanosa AG, Spyker DA, Curnow RT. Diabetes mellitus associated with autonomic and peripheral neuropathy after Vacor rodenticide poisoning: a review. J Toxicol Clin Toxicol. 1981;18:441–9.

    Article  CAS  Google Scholar 

  84. Lewitt PA. The neurotoxicity of the rat poison Vacor. N Engl J Med. 1980;302:73–7.

    Article  CAS  PubMed  Google Scholar 

  85. Brockmann JL, McDowell AV, Leeds WG. Fatal poisoning with sodium fluoroacetate. JAMA. 1955;159:1529–32.

    Article  CAS  Google Scholar 

  86. Chi CH, Chen KW, Chan SH, et al. Clinical presentation and prognostic factors in sodium monofluoroacetate intoxication. Clin Toxicol. 1996;34:707–12.

    CAS  Google Scholar 

  87. Chung HM. Acute renal failure caused by acute monofluoroacetate poisoning. Vet Hum Toxicol. 1984;26:29–32.

    PubMed  Google Scholar 

  88. Parkin PJ, McGiven AR, Bailey RR. Chronic sodium monofluoroacetate (Compound 1080) intoxication in a rabbiter. N Z Med J. 1977;85:93–6.

    CAS  PubMed  Google Scholar 

  89. Boyd RE, Brennan PT, Deng JF. Strychnine poisoning: recovery from profound lactic acidosis, hyperthermia, and rhabdomyolysis. Am J Med. 1983;74:507–12.

    Article  CAS  PubMed  Google Scholar 

  90. Gordon AM, Richards DW. Strychnine intoxication. Ann Emerg Med. 1979;8:520–2.

    Google Scholar 

  91. Heiser JH, Daya MR, Magnussen AR, et al. Massive strychnine intoxication: serial blood levels in a fatal case. J Toxicol Clin Toxicol. 1992;30:269–83.

    Article  CAS  PubMed  Google Scholar 

  92. O’Callaghan WG, Joyce N, Counihan HE, et al. Unusual strychnine poisoning and its treatment: report of eight cases. BMJ. 1982;285:478.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nishiyama T, Nagase M. Strychnine poisoning: natural course of a nonfatal case. Am J Emerg Med. 1995;13:172–3.

    Article  CAS  PubMed  Google Scholar 

  94. Van Heerden PV, Edibam C, Augustson B, et al. Strychnine poisoning: alive and well in Australia. Anaesth Intensive Care. 1993;21:876–8.

    PubMed  Google Scholar 

  95. Dickson E, Hawkins RC, Reynolds R. Strychnine poisoning: an uncommon cause of convulsions. Aust N Z J Med. 1992;22:500–1.

    CAS  PubMed  Google Scholar 

  96. Hernandez AF, Pomares J, Schiaffino S, et al. Acute chemical pancreatitis associated with nonfatal strychnine poisoning. J Toxicol Clin Toxicol. 1998;36:67–71.

    Article  CAS  PubMed  Google Scholar 

  97. Katona B, Wason S. Superwarfarin poisoning. J Emerg Med. 1989;7:627–31.

    Article  CAS  PubMed  Google Scholar 

  98. Wells JA, Wood KE. Acute barium poisoning treated with hemodialysis. Am J Emerg Med. 2001;19:175–7.

    Article  CAS  PubMed  Google Scholar 

  99. Thomas M, Bowie D, Walker R. Acute barium intoxication following ingestion of ceramic glaze. Postgrad Med J. 1998;74:545–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. http://www.inchem.org/documents/pims/chemical/pim494.htm#2.3

  101. Rubia J, Grau E, Montserrat I, et al. Anaphylactic shock and vitamin K1. Ann Intern Med. 1989;110:943.

    Article  PubMed  Google Scholar 

  102. Becker RC, Ansell J. Antithrombotic therapy: an abbreviated reference for clinicians. Arch Intern Med. 1995;155:149–61.

    Article  CAS  PubMed  Google Scholar 

  103. Bruno G, Howland MA, McMeeking A, et al. Long-acting anticoagulant overdose: brodifacoum kinetics and optimal vitamin K dosing. Ann Emerg Med. 2000;36:262–7.

    Article  CAS  PubMed  Google Scholar 

  104. Choonara IA, Scott AK, Haynes BP, et al. Vitamin K1 metabolism in relation to pharmacodynamic response in anticoagulated patients. Br J Clin Pharmacol. 1985;20:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Park BK, Choonora IA, Haynes BP, et al. Abnormal vitamin K metabolism in the presence of normal clotting factor activity in factory workers exposed to 4-hydroxycoumarins. Br J Clin Pharmacol. 1984;18:655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Markov A, Causey A, Didlake R, et al. Prevention of alpha-naphthylthiourea-induced pulmonary edema with fructose-1,6 diphosphate. Exp Lung Res. 2002;28:285–99.

    Article  CAS  PubMed  Google Scholar 

  107. Hardwick S, Skamarauskas J, Smith L, et al. Protection of rats against the effects of α-naphthylthiourea (ANTU) by elevation of non-protein sulphydryl levels. Biochem Pharmacol. 1991;42:1203–8.

    Article  CAS  PubMed  Google Scholar 

  108. Mills K, Kunkel D. Prevention of severe barium carbonate toxicity with oral magnesium sulfate. Vet Hum Toxicol. 1993;35:342.

    Google Scholar 

  109. Jourdan S, Bertoni M, Sergio P, et al. Suicidal poisoning with barium chloride. Forensic Sci Int. 2001;119:263–5.

    Article  CAS  PubMed  Google Scholar 

  110. Berning J. Hypokalemia of barium poisoning. Lancet. 1975;1:110.

    Article  CAS  PubMed  Google Scholar 

  111. Sigue G, Gamble L, Pelitere M, et al. From profound hypokalemia to life-threatening hyperkalemia. Arch Intern Med. 2000;160:548–51.

    Article  CAS  PubMed  Google Scholar 

  112. Koch M, Appoloni O, Haufroid V, et al. Acute barium intoxication and hemodiafiltration. J Toxicol Clin Toxicol. 2003;41:363–7.

    Article  PubMed  Google Scholar 

  113. Gupta S, Ahlawat SK. Aluminum phosphide poisoning. J Toxicol Clin Toxicol. 1995;33:19–24.

    Article  CAS  PubMed  Google Scholar 

  114. Dulin WE, Wyse BM. Reversal of streptozocin diabetes with nicotinamide. Proc Soc Exp Biol Med. 1969;131:992–4.

    Article  Google Scholar 

  115. Deckert FW, Moss JN, Sambuca AS, et al. Nutritional and drug interactions with Vacor rodenticide in rats (Abstract). Fed Proc. 1977;36:990.

    Google Scholar 

  116. Taitelman U, Roy A, Raikhlin-Eisenkraft B, et al. The effect of monoacetin and calcium chloride on acid–base balance and survival in experimental sodium fluoroacetate poisoning. Arch Toxicol. 1983;6(Suppl):222–7.

    Article  CAS  Google Scholar 

  117. Omara F, Sisodia CS. Evaluation of potential antidotes for sodium fluoroacetate in mice. Vet Hum Toxicol. 1990;32:427–31.

    CAS  PubMed  Google Scholar 

  118. Mishima M, Tanimoto Y, Oguri K, et al. Metabolism of strychnine in vitro. Drug Metab Dispos. 1985;13:716–21.

    CAS  PubMed  Google Scholar 

  119. Sgaragli GP, Mannaioni PF. Pharmacokinetic observations on a case of massive strychnine poisoning. Clin Toxicol. 1973;6:533–40.

    Article  CAS  PubMed  Google Scholar 

  120. Edmunds M, Sheehan TMT, Hoff WV. Strychnine poisoning: clinical and toxicological observations on a non-fatal case. J Toxicol Clin Toxicol. 1986;24:245–55.

    Article  CAS  PubMed  Google Scholar 

  121. Palatnick W, Meatherall R, Sitar D, et al. Toxicokinetics of acute strychnine poisoning. J Toxicol Clin Toxicol. 1997;35:617–20.

    Article  CAS  PubMed  Google Scholar 

  122. Chefurka W, Kashi KP, Bond EJ. The effect of phosphine on electron transport in mitochondria. Pestic Biochem Physiol. 1976;6:65–84.

    Article  CAS  Google Scholar 

  123. Donovan JW, Ballard JO, Murphy MJ. Brodifacoum therapy with activated charcoal: effect on elimination kinetics. Vet Hum Toxicol. 1990;32:350.

    Google Scholar 

  124. Burkhart KK. Anticoagulant rodenticides. In Ford MD, Delaney KA, Ling LJ, Erikson T (eds): Clinical Toxicology. Philadelphia, WB Saunders, 2001, p 849.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennie A. Buchanan .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Chuang, R., Buchanan, J.A. (2017). Rodenticides. In: Brent, J., et al. Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-17900-1_142

Download citation

Publish with us

Policies and ethics