Skip to main content

A Cauchy-Kovalevsky Theorem for Nonlinear and Nonlocal Equations

  • Conference paper
  • First Online:
Analysis and Geometry

Abstract

For a generalized Camassa-Holm equation it is shown that the solution to the Cauchy problem with analytic initial data is analytic in both variables, locally in time and globally in space. Furthemore, an estimate for the analytic lifespan is provided. To prove these results, the equation is written as a nonlocal autonomous differential equation on a scale of Banach spaces and then a version of the abstract Cauchy-Kovalevsky theorem is applied, which is derived by the power series method in these spaces. Similar abstract versions of the nonlinear Cauchy-Kovalevsky theorem have been proved by Ovsyannikov, Treves, Baouendi and Goulaouic, Nirenberg, and Nishida.

In memory of M. Salah Baouendi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.S. Baouendi, C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application to Cauchy problems. J. Differ. Equ. 48 (1983)

    Google Scholar 

  2. M.S. Baouendi, C. Goulaouic, Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems. Commun. Partial Differ. Equ. 2(11), 1151–1162 (1977)

    Google Scholar 

  3. R. Barostichi, A. Himonas, G. Petronilho, Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems. Preprint (2013)

    Google Scholar 

  4. R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993)

    Google Scholar 

  5. C. Cao, D. Holm, E. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dynam. Differ. Equ. 16(1), 167–178 (2004)

    Google Scholar 

  6. A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Google Scholar 

  7. A. Constantin, H. McKean, A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Google Scholar 

  8. A. Constantin, W. Strauss, Stability of the Camassa-Holm solitons. J. Nonlinear Sci. 12(4), 415–422 (2002)

    Google Scholar 

  9. R. Danchin, A few remarks on the Camassa-Holm equation. Differ. Integral Equ. 14(8), 953–988 (2001)

    Google Scholar 

  10. A. Degasperis, M. Procesi, Asymptotic Integrability Symmetry and Perturbation Theory. (Rome, 1998) (World Scientific Publishing, 1999), pp. 23–37

    Google Scholar 

  11. A. Degasperis, D.D. Holm, A.N.W. Hone, A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Google Scholar 

  12. A. Fokas, On a class of physically important integrable equations. Phys. D 87(1–4), 145–150 (1995)

    Google Scholar 

  13. A. Fokas, B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditary symmetries. Phys. D 4, 47–66 (1981)

    Google Scholar 

  14. K. Grayshan, A. Himonas, Equations with peakon traveling wave solutions. Adv. Dyn. Syst. Appl. 8(2), 217–232 (2013)

    Google Scholar 

  15. A. Himonas, G. Misiołek, G. Ponce, Non-uniform continuity in \(H^1\) of the solution map of the CH equation. Asian J. Math. 11(1), 141–150 (2007)

    Google Scholar 

  16. A. Himonas, C. Kenig, G. Misiołek, Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35, 1145–1162 (2010)

    Google Scholar 

  17. A. Himonas, C. Holliman, K. Grayshan, Norm inflation and ill-posedness for the Degasperis-Procesi equation. Commun. Partial Differ. Equ. 39, 2198–2215 (2014)

    Google Scholar 

  18. A. Himonas, C. Holliman, On well-posedness of the Degasperis-Procesi equation. Discrete Contin. Dyn. Syst. 31(2), 469–488 (2011)

    Google Scholar 

  19. A. Himonas, C. Holliman, The Cauchy Problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Google Scholar 

  20. A. Himonas, C. Holliman, The Cauchy problem for a generalized Camassa-Holm equation. Adv. Differ. Equ. 19(1–2), 161–200 (2014)

    Google Scholar 

  21. A. Himonas, C. Kenig, Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 22(3–4), 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  22. A. Himonas, G. Misiołek, The Cauchy problem for an integrable shallow water equation. Differ. Integral Equ. 14(7), 821–831 (2001)

    MATH  Google Scholar 

  23. A. Himonas, G. Misiołek, Analyticity of the Cauchy problem for an integrable evolution equation. Math. Ann. 327(3), 575–584 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Himonas, G. Misiołek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun. Math. Phys. 296, 285–301 (2010)

    Article  MATH  Google Scholar 

  25. A. Himonas, R. Thompson, Persistence Properties and Unique Continuation for a generalized Camassa-Holm Equation. J. Math. Phys. 55, 091503 (2014)

    Article  Google Scholar 

  26. D. Holm and A. Hone, A class of equations with peakon and pulson solutions. (With an appendix by H. Braden and J. Byatt-Smith). J. Nonlinear Math. Phys. 12, suppl. 1, 380–394 (2005)

    Google Scholar 

  27. A. Hone, H. Lundmark, J. Szmigielski, Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type equation. Dyn. of PDE 6(3), 253–289 (2009)

    MathSciNet  MATH  Google Scholar 

  28. J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. 306(1), 72–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equs. 162 (2000)

    Google Scholar 

  30. A. Mikhailov, V. Novikov, Perturbative symmetry approach. J. Phys. A 35(22), 4775–4790 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Molinet, On well-posedness results for the Camassa-Holm equation on the line: A survey. J. Nonlinear Math. Phys. 11, 521–533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalevski theorem. J. Differ. Geom. 6 (1972)

    Google Scholar 

  33. T. Nishida, A note on a theorem of Nirenberg. J. Differ. Geom. 12 (1977)

    Google Scholar 

  34. V. Novikov, Generalizations of the Camassa-Holm type equation. J. Phys. A: Math. Theor. 42(34), 342002 (2009)

    Article  Google Scholar 

  35. L.V. Ovsyannikov, A nonlinear Cauchy problem in a scale of Banach spaces. Dokl. Akad. Nauk. SSSR 200 (1971)

    Google Scholar 

  36. L.V. Ovsyannikov, Non-local Cauchy problems in fluid dynamics. Actes Congr. Int. Math. Nice 3 (1970)

    Google Scholar 

  37. L.V. Ovsyannikov, Singular operators in Banach spaces scales. Dokl. Acad. Nauk. 163 (1965). Actes Congr. Int. Math. Nice 3 (1970)

    Google Scholar 

  38. G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46 (2001), Theory Methods, 309–327

    Google Scholar 

  39. F. Tiglay, The Periodic cauchy problem for Novikov’s equation. IMRN (2010)

    Google Scholar 

  40. F. Treves, An abstract nonlinear Cauchy-Kovalevska theorem, Trans. Am. Math. Soc. 150 (1970)

    Google Scholar 

  41. F. Treves, Ovcyannikov Analyticity and Applications, talk at VI Geometric Analysis of PDEs and Several Complex Variables (2011), http://www.dm.ufscar.br/eventos/wpde2011

  42. F. Treves, Ovsyannikov theorem and hyperdifferential operators. Notas de Matematica 46, (1968)

    Google Scholar 

  43. E. Trubowitz, The inverse problem for periodic potentials. Commun. Pure Appl. Math. 30 (1977)

    Google Scholar 

  44. Z. Yin, Global existence for a new periodic integrable equation. J. Math. Anal. Appl. 283(1), 129–139 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Simons Foundation (#246116 to Alex Himonas). The third author was partially supported by CNPq and Fapesp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alexandrou Himonas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Barostichi, R.F., Himonas, A.A., Petronilho, G. (2015). A Cauchy-Kovalevsky Theorem for Nonlinear and Nonlocal Equations. In: Baklouti, A., El Kacimi, A., Kallel, S., Mir, N. (eds) Analysis and Geometry. Springer Proceedings in Mathematics & Statistics, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-17443-3_5

Download citation

Publish with us

Policies and ethics