Skip to main content

Overview of Greenhouse Gases and Global Warming

  • Chapter
  • First Online:
Carbon Dioxide Capture: An Effective Way to Combat Global Warming

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

  • 2000 Accesses

Abstract

Evidence proves that the climate is changing due to both natural cycles and anthropogenic influences. The increase in global carbon dioxide concentration, along with that of other greenhouse gases, is a major cause of global warming. Studies indicate that total emissions released from fossil fuels are related to the economy, are still on the rise, and can be stabilized through conscious efforts. Improving land management practices, incorporating carbon sequestration techniques, increasing energy efficiency, and using alternative energy sources are current ways that we can decrease our use of fossil fuels. Some alternative energy sources include waste biomass and cellulosic ethanol, along with others. Current research aims to identify ways to provide affordable fuel sources with little environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annual Energy Review (ed) (2011) U.E.I. Administration

    Google Scholar 

  • Boer GJ, Mcfarlane NA, Lazare M (1992) Greenhouse gas induced climate change simulated with the CCC 2nd-generation general-circulation model. J Clim 5(10):1045–1077

    Article  Google Scholar 

  • Cai WJ, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu LX, England MH, Wang GJ, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Nino events due to greenhouse warming. Nat Climate Change 4(2):111–116

    Article  CAS  Google Scholar 

  • Chalk SG, Miller JE (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sour 159(1):73–80

    Article  CAS  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33(1):L01602

    Google Scholar 

  • Cinner JE, Huchery C, Darling ES, Humphries AT, Graham, NAJ, Hicks CC, Marshall N, McClanahan TR (2013) Evaluating social and ecological vulnerability of coral reef fisheries to climate change. Plos One 8(9):e74321

    Google Scholar 

  • Collins M, An SI, Cai WJ, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific ocean and El Nino. Nat Geosci 3(6):391–397

    Article  CAS  Google Scholar 

  • Cozier M (2007) Reducing CO2 emissions. Biofuels Bioprod Biorefin Biofpr 1(4):237

    Article  Google Scholar 

  • Cynthia Rosenweig AI, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events—implications for food production, plant diseases, and pests. NASA Publications, Washington (Paper 24)

    Google Scholar 

  • Glynn PW (1991) Coral-reef bleaching in the 1980s and possible connections with global warming. Trends Ecol Evol 6(6):175–179

    Article  CAS  Google Scholar 

  • Gustavsson L, Borjesson P, Johansson B, Svenningsson P (1995) Reducing CO2 emissions by substituting biomass for fossil-fuels. Energy 20(11):1097–1113

    Article  CAS  Google Scholar 

  • Hall MHP, Fagre DB (2003) Modeled climate-induced glacier change in Glacier National Park, 1850–2100. Bioscience 53(2):131–140

    Article  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435

    Article  CAS  Google Scholar 

  • Hasselmann K, Hasselmann S, Giering R, Ocana V, VonStorch H (1997) Sensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM). Clim Change 37(2):345–386

    Article  CAS  Google Scholar 

  • Hogan W, Jorgenson D (2007) Productivity trends and the cost of reducing CO2 emissions. Discussion paper E-90-07, Kennedy School of Government, Harvard University

    Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Kay AL, Davies HN (2008) Calculating potential evaporation from climate model data: a source of uncertainty for hydrological climate change impacts. J Hydrol 358(3–4):221–239

    Article  Google Scholar 

  • Logan JA, Regniere J, Powell JA (2003) Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ 1(3):130–137

    Article  Google Scholar 

  • Maclean IMD, Wilson RJ (2011) Recent ecological responses to climate change support predictions of high extinction risk. Proc Natl Acad Sci USA 108(30):12337–12342

    Article  CAS  Google Scholar 

  • Manne A (1997) On stabilizing CO2 concentrations- cost-effective emission reduction strategies. Environ Model Assesst 2:251–265

    Google Scholar 

  • Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17(6):1510–1521

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  Google Scholar 

  • Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR (2012) Correspondence: rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Climate Change 2(1):2–4

    Article  CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu QG, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu CZ, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193):353–U20

    Article  CAS  Google Scholar 

  • Ross DK (2006) Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80(10):1084–1089

    Article  CAS  Google Scholar 

  • Seneviratne SI, Donat MG, Mueller B, Alexander LV (2014) No pause in the increase of hot temperature extremes (4:161). Nat Climate Change 4(5):320

    Article  Google Scholar 

  • State U.S.D.O. (2006) Fourth climate action report to the un framework convention on climate change (ed) B.o.O.a.I.E.a.S. Affairs

    Google Scholar 

  • Vineis P (2014) Climate changes the new IPCC report: urgent action needed. Epidemiol Prev 38(2):142–143

    Google Scholar 

  • Vose JM, Peterson DL, Patel-Weynand T, Pacific Northwest Research Station (Portland Or.) (2012) Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the U.S. forest sector. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

    Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157

    Article  CAS  Google Scholar 

  • Zhang PZ, Molnar P, Downs WR (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410(6831):891–897

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Creamer, A.E., Gao, B. (2015). Overview of Greenhouse Gases and Global Warming. In: Carbon Dioxide Capture: An Effective Way to Combat Global Warming. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-17010-7_1

Download citation

Publish with us

Policies and ethics