Skip to main content

Brain at Birth

  • Living reference work entry
  • First Online:
Encyclopedia of Evolutionary Psychological Science

Synonyms

Neonatal brain size; Neonatal brain/body allometry

Definition

The absolute size, relative size (brain/body ratio), and stage of neurodevelopment in a species’ brain at the time of birth.

Introduction

The size and developmental stage of the newborn brain is highly variable across different mammalian species. For decades, the state of mammalian brains at birth has been the focus of great interest by researchers in developmental and reproductive biology, biological anthropology, and the evolution of life history. Although methods for comparing species’ brains at birth have varied widely, two major approaches have generally been used to examine birth timing and mammalian brains at birth. First, thanks to several large datasets (e.g., Sacher and Staffeldt 1974; Harvey and Clutton-Brock 1985), neonatal brain size, body size, gestation length, and similar variables have been analyzed by researchers in anthropology, life history, and evolutionary biology. A second approach uses more...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashwell, K. W. S., Waite, P. M. E., & Marotte, L. (1996). Ontogeny of the projection tracts and commissural fibres in the forebrain of the tammar wallaby (Macropus eugenii): Timing in comparison with other mammals. Brain Behavior & Evolution, 47, 8–22.

    Article  Google Scholar 

  • Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.

    Google Scholar 

  • Count, E. W. (1947). Brain and body weight in man: Their antecedents in growth and evolution. Annals of the New York Academy of Sciences, 46, 993–1122.

    Article  Google Scholar 

  • Crile, G., & Quiring, D. P. (1940). A record of the body weight and certain organ and gland weights of 3690 animals. The Ohio Journal of Science, 15(5), 219–259.

    Google Scholar 

  • Deacon, T. W. (1990). Problems of ontogeny and phylogeny in brain-size evolution. International Journal of Primatology, 11, 237–282.

    Article  Google Scholar 

  • DeSilva, J. M., & Lesnik, J. J. (2008). Brain size at birth throughout human evolution: A new methods for estimating neonatal brain size in hominins. Journal of Human Evolution, 55, 1064–1074.

    Article  Google Scholar 

  • Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 311, 79–83.

    Article  Google Scholar 

  • Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T., & Pontzer, H. (2012). Metabolic hypothesis for human altriciality. Proceedings of the National Academy of Sciences, 109(38), 15212–15216.

    Article  Google Scholar 

  • Finlay, B. L., & Workman, A. D. (2013). Human exceptionalism. Trends in Cognitive Sciences, 17(5), 199–201.

    Article  Google Scholar 

  • Halley, A. C. (2016). Prenatal brain/body allometry in mammals. Brain Behavior & Evolution, 88, 14–24.

    Article  Google Scholar 

  • Halley, A. C. (2017). Minimal variation in eutherian brain growth rates during fetal neurogenesis. Proceedings of the Royal Society of London B: Biological Sciences, 284, 20170219.

    Article  Google Scholar 

  • Harvey, P. H., & Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution, 39(3), 559–581.

    Article  Google Scholar 

  • Holt, A. B., Renfree, M., & Cheek, D. B. (1981). Comparative aspects of brain growth: A critical evaluation of mammalian species used in brain growth research with emphasis on the Tammar wallaby. In B. S. Hetzel & R. M. Smith (Eds.), Fetal brain disorders – Recent approaches to the problem of mental deficiency (pp. 17–43). New York/Amsterdam: Elsevier/North-Holland Biomedical Press.

    Google Scholar 

  • Hrdy, S. B. (2011). Mothers and others: The evolutionary basis of mutual understanding. Cambridge: Harvard University Press.

    Google Scholar 

  • Kaas, J. H., & Preuss, T. M. (2013). Human brain evolution. In L. Squire, D. Berg, F. E. Bloom, S. du Lac, A. Ghosh, & N. C. Spitzer (Eds.), Fundamental Neuroscience (4th ed., pp. 901–918). London: Academic Press.

    Chapter  Google Scholar 

  • Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. American Journal of Primatology, 62, 139–164.

    Article  Google Scholar 

  • Martin, R. D. (1982). Human brain evolution in an ecological context. New York: American Museum of Natural History.

    Google Scholar 

  • Martínez-Cerdeño, V., Camacho, J., Ariza, J., Rogers, H., Horton-Sparks, K., Kreutz, A., et al. (2017). The bat as a new model of cortical development. Cerebral Cortex in press.

    Google Scholar 

  • Newell-Morris, L., & Fahrenbruch, C. F. (1985). Practical and evolutionary considerations for use of the non-human primate model in prenatal research. In E. S. Watts (Ed.), Nonhuman primate models for human growth and development (pp. 9–40). New York: AR Liss.

    Google Scholar 

  • Pagel, M. D., & Harvey, P. H. (1990). Diversity in the brain sizes of newborn mammals. Bioscience, 40(2), 116–122.

    Article  Google Scholar 

  • Passingham, R. E. (1985). Rates of brain development in mammals including man. Brain Behavior & Evolution, 26, 167–175.

    Article  Google Scholar 

  • Ponce de Leon, M. S., Golovanova, L., Doronichev, V., Romanova, G., Akazawa, T., Kondo, O., et al. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences, 105(37), 13764–13768.

    Article  Google Scholar 

  • Puzzolo, E., & Mallamaci, A. (2010). Cortico-cerebral histogenesis in the opossum Monodelphis domestica: Generation of a hexalaminar neocortex in the absence of a basal proliferative compartment. Neural Development, 5, 8.

    Article  Google Scholar 

  • Renfree, M. B., Holt, A. B., Green, S. W., Carr, J. P., & Cheek, D. B. (1982). Ontogeny of the brain in a marsupial (Macropus eugenii) throughout pouch life. Brain, Behavior & Evolution, 20, 57–71.

    Article  Google Scholar 

  • Rosenberg, K. R., & Trevathan, W. R. (1995). Bipedalism and human birth: The obstetrical dilemma revisited. Evolutionary Anthropology, 4, 161–168.

    Article  Google Scholar 

  • Sacher, G. A., & Staffeldt, E. F. (1974). Relation of gestation time to brain weight for placental mammals: Implications for the theory of vertebrate growth. The American Naturalist, 108(963), 593–615.

    Article  Google Scholar 

  • Sakai, T., Matsui, M., Mikami, A., Malkova, L., Hamada, Y., Tomonaga, M., et al. (2013). Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122398.

    Article  Google Scholar 

  • Sherwood, C. C., & Gomez-Robles, A. (2017). Brain plasticity and human evolution. Annual Review of Anthropology, 46, 399–419.

    Article  Google Scholar 

  • Trevathan, W. R. (1987). Human birth: An evolutionary perspective. Piscataway: Transaction Publishers.

    Google Scholar 

  • Washburn, S. L. (1960). Tools and human evolution. Scientific American, 203, 62–75.

    Article  Google Scholar 

  • Workman, A. D., Charvet, C. J., Clancy, B., Darlington, R. B., & Finlay, B. L. (2013). Modeling transformations of neurodevelopmental sequences across mammalian species. Journal of Neuroscience, 33(17), 7368–7383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C Halley .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Halley, A.C. (2018). Brain at Birth. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_802-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_802-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics