Skip to main content

Saliency Detection via Nonlocal \(L_{0}\) Minimization

  • Conference paper
  • First Online:
Book cover Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

Abstract

In this paper, by observing the intrinsic sparsity of saliency map for the image, we propose a novel nonlocal \(L_{0}\) minimization framework to extract the sparse geometric structure of the saliency maps for the natural images. Specifically, we first propose to use the \(k\)-nearest neighbors of superpixels to construct a graph in the feature space. The novel \(L_{0}\)-regularized nonlocal minimization model is then developed on the proposed graph to describe the sparsity of saliency maps. Finally, we develop a first order optimization scheme to solve the proposed non-convex and discrete variational problem. Experimental results on four publicly available data sets validate that the proposed approach yields significant improvement compared with state-of-the-art saliency detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation \('\sharp '\) is a mathematical representation which stands for the cardinality of a set.

  2. 2.

    We would like to list the running time (second per image) for the compared methods in our paper: Our 0.97s, CA 48.65s, CB 1.97s, LR 14.89s, CH 1.07s, MR 1.02s, MC 0.25s. It can be observed that our detector is comparable among all the MATLAB implementation based saliency detectors in our paper.

References

  1. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. PAMI 34, 1915–1926 (2012)

    Article  Google Scholar 

  2. Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV (2011)

    Google Scholar 

  3. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR (2012)

    Google Scholar 

  5. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by ufo: Uniqueness, focusness and objectness. In: ICCV (2013)

    Google Scholar 

  6. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: CVPR (2011)

    Google Scholar 

  7. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS (2006)

    Google Scholar 

  8. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1254–1259 (1998)

    Article  Google Scholar 

  9. Ma, Y.F., Zhang, H.J.: Contrast-based image attention analysis by using fuzzy growing. In: ACM Multimedia (2003)

    Google Scholar 

  10. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR (2007)

    Google Scholar 

  11. Achanta, R., Estrada, F.J., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR (2009)

    Google Scholar 

  13. Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)

    Google Scholar 

  14. Mai, L., Niu, Y., Liu, F.: Saliency aggregation: a data-driven approach. In: CVPR (2013)

    Google Scholar 

  15. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. PAMI 33, 353–367 (2011)

    Article  Google Scholar 

  16. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. PAMI 34, 2274–2282 (2012)

    Article  Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. PAMI 22, 888–905 (2000)

    Article  Google Scholar 

  18. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20, 637–640 (2013)

    Article  MathSciNet  Google Scholar 

  19. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR (2013)

    Google Scholar 

  20. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV (2013)

    Google Scholar 

  21. Jiang, Z., Davis, L.S.: Submodular salient region detection. In: CVPR (2013)

    Google Scholar 

  22. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs to model saliency in images. In: CVPR (2009)

    Google Scholar 

  23. Jia, Y., Han, M.: Category-independent object-level saliency detection. In: ICCV (2013)

    Google Scholar 

  24. Liu, R., Lin, Z., Shan, S.: Adaptive partial differential equation learning for visual saliency detection. In: CVPR (2014)

    Google Scholar 

  25. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    Article  Google Scholar 

  26. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: NIPS (2011)

    Google Scholar 

  27. Liu, R., Lin, Z., Su, Z.: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. In: ACML (2013)

    Google Scholar 

  28. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(l_{0}\) gradient minimization. ACM TOG 30, 174 (2011)

    Google Scholar 

  29. Xu, L., Zheng, S., Jia, J.: Unnatural \(l_{0}\) sparse representation for natural image deblurring. In: CVPR (2013)

    Google Scholar 

  30. Pan, J., Su, Z.: Fast \(l_{0}\)-regularized kernel estimation for robust motion deblurring. IEEE Sig. Process. Lett. 20, 841–844 (2013)

    Article  MathSciNet  Google Scholar 

  31. Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete regularization on weighted graphs for image and mesh filtering. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 128–139. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Einhäuser, W., König, P.: Does luminance-contrast contribute to a saliency map for overt visual attention? Eur. J. Neurosci. 17, 1089–1097 (2003)

    Article  Google Scholar 

  34. Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: CVPR (2012)

    Google Scholar 

  35. Xie, Y., Lu, H.: Visual saliency detection based on bayesian model. In: ICIP (2011)

    Google Scholar 

  36. Bresson, X.: A short note for nonlocal tv minimization (2009)

    Google Scholar 

  37. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR (2013)

    Google Scholar 

  38. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia (2006)

    Google Scholar 

  39. Achanta, R., Susstrunk, S.: Saliency detection using maximum symmetric surround. In: ICIP (2010)

    Google Scholar 

Download references

Acknowledgement

Risheng Liu is supported by the National Natural Science Foundation of China (No. 61300086), the China Postdoctoral Science Foundation (2013M530917, 2014T70249), the Fundamental Research Funds for the Central Universities (No. DUT12RC(3)67) and the Open Project Program of the State Key Laboratory of CAD&CG, Zhejiang University, Zhejiang, China (No. A1404). Zhixun Su is supported by National Natural Science Foundation of China (Nos. 61173103, 91230103) and National Science and Technology Major Project (No. 2013ZX04005021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixun Su .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 3,067 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Liu, R., Song, X., Su, Z. (2015). Saliency Detection via Nonlocal \(L_{0}\) Minimization. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics